帳號:guest(18.226.163.72)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):柯婉婷
作者(外文):Ke, Wan-Ting
論文名稱(中文):整合讀取電路之具抑制可見光 CMOS紫外光光電晶體
論文名稱(外文):Visible Light Suppressing CMOS Ultraviolet Phototransistors Integrated with the Readout Circuits
指導教授(中文):李明昌
指導教授(外文):Lee, Ming-Chang
口試委員(中文):徐永珍
陳新
口試委員(外文):Hsu, Yung-Jane
Chen, Hsin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:105066508
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:122
中文關鍵詞:光電晶體紫外光帶通濾波器紫外光光偵測器讀取電路單位增益緩衝器CMOS 標準製程
外文關鍵詞:CMOS standard processUV band-pass filterLateral Bipolar PhototransistorsUnity gain bufferReadout circuitsUV photodetector
相關次數:
  • 推薦推薦:0
  • 點閱點閱:152
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著智慧裝置以及網際網路的普及化,光感測器成為人類生活中不可或缺的角色。而感測元件的體積也隨著科技的進步不斷縮小。目前非可見光波段的光偵測器,如紫外光及紅外光偵測器,需使用成本較高的材料來製作。若能利用CMOS標準製程來製作紫外光光偵測器並能整合讀取電路於晶片上,不僅能降低產製作成本也能達到積體化縮小尺寸的目標。
本論文利用CMOS標準製程結合金屬-介電質-金屬結構的紫外光帶通濾波器以及NPN指叉型式橫向雙極性光電晶體(Inter-digitated Lateral Bipolar Phototransistor),整合單一像素讀取電路於同一晶片。文中將提出相關的設計與製程方式。藉由紫外光帶通濾波器在波長348 nm擁有58 %的穿透率,我們成功抑制可見光響應度。紫外光電晶體在逆向偏壓0.75 V的暗電流數值為3.97 x 10^-11 A,整合讀取電路可量測到2.00 × 10^-10 A的暗電流,在相同積分時間下,隨著照光強度越大,輸出電壓變化量也有所增加。
We use standard CMOS fabrication process to implement interdigitated Si lateral bipolar phototransistors integrated with the readout circuits. After the device is fabricated, an MDM (metal-dielectric-metal structure) ultraviolet Fabry-Pérot band-pass filter on the phototransistors to suppress the transmittance of visible light. The maximum optical transmittance is 0.58 at the wavelength 348 nm, while the visible light transmittance, on the other hand, is reduced to be less than 0.17. When the bias voltage is 0.75 V, the dark current of the phototransistors is measured to 3.97 x 10^-11 A. The readout circuits can convert the photocurrent to voltage, which is proportional to the light intensity and the integration time.
摘要 I
英文摘要 II
致謝 III
目錄 V
圖目錄 VIII
表目錄 XVI
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 4
1.3論文文章架構 6
第二章 理論背景 8
2.1紫外光(UV)在矽基材的吸收 8
2.2光偵測器原理 10
2.2.1光偵測器種類與比較 10
2.2.2光偵測器基本操作原理 10
2.2.3光偵測器特性參數 12
2.2.4光電晶體操作原理 18
2.3紫外光帶通濾波器 21
2.4讀取電路原理與雜訊 26
2.4.1畫素電路 26
2.4.2 MOS電流鏡 28
2.4.3單位增益緩衝器(Unity Gain Buffer) 31
2.4.4積分電容及雜訊影響 37

第三章 紫外光光電晶體模擬設計 41
3.1紫外光光電晶體結構設計 41
3.2光電晶體暗電流特性模擬 42
3.3紫外光帶通濾波器(FDTD)光學模擬 45
第四章 讀取電路模擬與設計 50
4.1組合邏輯電路模擬 50
4.1.1 3-8解碼器模擬 50
4.2類比電路模擬 55
4.2.1 單位增益緩衝器模擬 55
4.2.2 單一像素讀取電路模擬 62
4.3元件讀取整體電路設計及模擬 67
第五章 光電晶體元件與讀取電路整合製作流程 71
5.1光電晶體元件製作流程圖及說明 71
5.1.1 紫外光光電晶體與讀取電路製作 71
5.1.2 紫外光光電晶體與讀取電路後段製作流程 72
5.1.3 晶片封裝 80
第六章 實驗量測結果與分析 81
6.1紫外光帶通濾波器頻譜量測及分析 81
6.1.1 紫外光光電晶體及薄膜成品 81
6.1.2薄膜量測結果與分析 83
6.2紫外光光電晶體光暗電流量測與分析 86
6.2.1元件特性曲線量測儀器架設 86
6.2.2光電晶體暗電流量測分析 89
6.2.3光電晶體光電流量測及光轉電響應頻譜分析 90
6.3 光電晶體單一像素量測與分析 104
6.3.1單一像素元件整合讀取電路量測儀器架設 104
6.3.2單一像素電流電壓轉換量測分析 106

第七章 結論與未來展望 110
7.1結論 110
7.2改善 112
7.3未來展望 119
參考文獻 120
[1]. C. Hongyu, et al., ‘‘New concept ultraviolet photodetector,’’ Journal of Materials Today, vol. 18, no. 9, pp. 492-502, November 2015.
[2]. A. Luštica, ‘‘CCD and CMOS image sensor,’’ 53rd International Symposium ElMAR, Zadar, Croatia, September 2011.
[3]. Y. Huang, ‘‘Current-Mode CMOS Image Sensor,’’ M.S. thesis, Applied Science in Electrical Engineering, Waterloo, Ontario, Canada, 2002.
[4]. Thorlabs PDA10A(-EC)Si Amplified Fixed Gain Detector User Guide, 2017.
[5]. H. Ouchi, T. Mukai, T. Kamei, and M. Okamura, ‘‘Silicon p-n Junction Photodiodes Sensitive to Ultraviolet Radiation,’’ IEEE Transactions On Electron Devices, vol. ED-26, no. 12, pp. 1965-1969, December 1979.
[6]. A. Ghazi, H. Zimmermann, and P. Seegebrecht, ‘‘CMOS photodiode with enhanced responsivity for the UV/Blue spectral range,’’ IEEE Transactions On Electron Devices, vol. 49, no. 7, pp. 1124-1128, July 2002.
[7]. 王羽廷, “CMOS製程相容之阻可見光紫外光光電晶體”, 清華大學光電工程研究所碩士班碩士論文, 2018.
[8]. B. E. A. Saleh, M. C. Teich, “Semiconductor photon detectors,” Fundamentals of Potonics, 2ed, Wiley, pp. 749-803, 2007.
[9]. C. Pernot ,et al., “Solar-Blind UV Photodetectors Based on GaN/AlGaN p-i-n Photodiodes,” The Japan Society of Applied Physics, Part 2, vol. 39, no. 5A, pp. L387-L389, May 2000.
[10]. Z. Alaie, S. Mohammad Nejad, M.H. Yousefi, “Recent advances in ultraviolet phototdetectors,” Materials Science in Semiconductor, vol. 29, pp. 16-55, 2015.
[11]. D. Decoster, J. Harari, “Introduction to Semiconductor Photodetectors,” Optoelectronic Sensors, John Wiley & Sons, pp.5-14, 2013.
[12]. J. M. Liu, “Photodetectors,” Phtonic Device, Reissue edition, Cambridge University Press, pp. 926-1017, 2009.
[13]. M. Razeghi, “Photodetectors,” Fundamentals of Solid State Engineering, Kluwer Academic Publishers, pp. 545-582, 2002.
[14]. E. Coates, “Opto coupled Device,” Learnabout Electronics, 2017. http://www.learnabout-electronics.org/Semiconductors/opto_50.php
[15]. S. M. Sze, K. K. Ng, “Photodetectors and Solar Cells,” Physics of Semiconductor Devices, ThirdEdition, WILEY-INTERSCIENCE, pp.663-742, 2007.
[16]. C. Sharma, et al., “A Review of BJT Based Phototransistor,” Engineering Research & Technology, vol. 3, Issue 4, pp. 306-310, April 2014.
[17]. H. A. Macleod, “Band-pass filters,” Thin-Film Optical Filters, ThirdEdition, Institute of Physics Publishing, pp. 257-347, 2001.
[18]. W.D. Li and S. Y. Chou, “Solar-blind deep-UV band-pass filter (250- 350 nm) consisting of a metal nano-grid fabricated by nanoimprintlithography,” Optics Express, vol. 12, no.2, pp. 931-937, January 2010.
[19]. H. Shin, et al., “Omnidirectional resonance in a metal-dielectric-metal geometry,” Applied Physica Letters, vol. 84, no. 22, pp. 4421-4423, May 2004.
[20]. J. L. Zhang, et al., “Omnidirectional narrow bandpass filter based on metal-dielectric thin films,” Applied Optics, vol.47, no.33, pp. 6285-6290, November 2008.
[21]. S. Kim, M. Man, M. Qi, and K. J. Webb, “Angle-insensitive and solar-blind ultraviolet bandpass filter,” Optics letters, vol.39, no.19 , pp. 5784-5787, October 2014.
[22]. D. Gérard, and S. K. Gray, “Aluminium plasmonics,” Physics D: Applied Physics, vol.45, pp.1-14, 2015
[23]. L. J. Kozlowski, J. Luo, W. E. Kleinhans, and T. Liu, “Comparison of Passive and Active Pixel Schemes for CMOS Visible Imagers,” SPIE, vol.3360, pp. 1-12, 1998.
[24]. A. Palakodety, ‘‘CMOS Active Pixel Sensors for Digital Cameras: Current state of the art,’’ M.S. thesis, Science, North Texas, 2007.
[25]. 陳天佑, 李元彪, “ 0.35 微米電流鏡分析與研究”, TTDA Proceeding of Conferences, 技術精進研討會, Hsinchu, Taiwan, April 2013.
[26]. 黃弘堯, 周瑞峰, “ CMOS電流鏡設計應用與佈局”, 崑山科技大學電子工程學系專題報告, 2015.
[27]. B. Razavi, “Passive and Active Current Mirrors,” Design of Analog CMOS Intergrated Circuits, McGraw-Hill Higher Education, pp. 135-165, 2001.
[28]. B. Razavi, “Cascode Stages and Current Mirrors,” Fundamentals of Microelectronics, Preview edition, Wiley, pp. 419-465, 2006.
[29]. R. L. Geiger, E. Sânchez-Sinencio, “Active Filter Design Using Operational
Transconductance Amplifiers: A Tutorial,” IEEE Circuits and Devices Magazine, pp. 21-32, March 1985.
[30]. 葉倍宏, ‘‘運算放大器,” 電路學(一), 崑山科技大學光電系授課講義, pp. 01-42, 2010.
[31]. Md. Abdus Salam. Q. M. Rahman, ‘‘Capacitors and Inductors,” Fundamentals of Electrical Circuit Analysis, Springer, pp. 177-236, 2018.
[32]. B. Razavi, ‘‘Noise,” Design of Analog CMOS Integrated Circuits, McGraw-Hill Higher Education, pp. 201-245, 2001.
[33]. Dr. T. J. King, ‘‘Slides of Intergrated Circuit Device, ” Lecture#23, Spring 2003.
[34]. R. Kuroda, T. Nakazawa, K. Hanzawa and S. Sugawa, ‘‘Highly Ultraviolet Light Sensitive and Highly Reliable Photodiode with Atomically Flat Si Surface,” IISW, pp. 38-41, 2011.
[35]. T. Nakazawa, R. Kuroda, Y. Koda and S. Sugawa, ‘‘Photodiode dopant structure with atomicallt flat Si surface for high-sensitivity and stability to UV light,” SPIE-IS&T Electronic Imaging, vol.8298, no.82980M, pp. 1-8, 2012.
[36]. A. Alexandre, A. Pinna, B. Granado and P. Garda, ‘‘Modeling of vertical and lateral phototransistor using VHDL-AMS,” IEEE, p.142-147, 2004.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *