|
[1] S. Y. Zhou et al. Pseudospin-selective Floquet band engineering in black phosphorus. Nature 614, 75 (2023). [2] J. H. Buss et al. A setup for extreme-ultraviolet ultrafast angle-resolved photoelectron spectroscopy at 50-kHz repetition rate. Rev. Sci. Instrum 90, 023105 (2019). [3] A. K. Mills et al. Cavity-enhanced high harmonic generation for extreme ultraviolet time- and angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 90, 083001 (2019). [4] E. J. Sie et al. Time-resolved XUV ARPES with tunable 24 - 33 eV laser pulses at 30 meV resolution. Nat. Commun. 10, 3535 (2019). [5] Y. Liu et al. Extreme ultraviolet time- and angle-resolved photoemission setup with 21.5 meV resolution using high-order harmonic generation from a turn-key Yb:KGW amplifier. Rev. Sci. Instrum. 91, 013102 (2020). [6] I. Gierz et al. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nat. Mater. 12, 1119 (2013). [7] S. Ulstrup et al. Ultrafast dynamics of massive Dirac fermions in bilayer graphene. Phys. Rev. Lett. 112, 257401 (2014). [8] J. A. Sobota et al. Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3. Phys. Rev. Lett. 108, 117403 (2012). [9] S. Zhu et al. Ultrafast electron dynamics at the Dirac node of the topological insulator Sb2Te3. Sci. Rep. 5, 13213 (2015). [10] R. Y. Liu et al., Femtosecond to picosecond transient effects in WSe2 observed by pump-probe angle-resolved photoemission spectroscopy. Sci. Rep. 7, 15981 (2017). [11] S. K. Sundaram et al. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 1, 217 (2002). [12] S. Parham et al. Ultrafast gap dynamics and electronic interactions in a photoexcited cuprate superconductor. Phys. Rev. X. 7, 041013 (2012). [13] C. L. Smallwood et al. Tracking cooper pairs in a cuprate superconductor by ultrafast angle-resolved photoemission. Science 336, 1137-1139 (2012) [14] T. Rohwer et al. Time-domain classification of charge-density-wave insulators, Nat Commun. 3, 1069 (2012). [15] F. Schmitt et al. Transient electronic structure and melting of a charge density wave in TbTe3. Science 321, 1649 - 1652 (2008). [16] B. Lv et al. Angle-resolved photoemission spectroscopy and its application to topological materials. Nat. Rev. Phys. 1, 609 - 626 (2019). [17] I. Avigo et al. Electronic structure and ultrafast dynamics of FeAs-based superconductors by angle- and time- resolved photoemission spectroscopy. Phys. Status Solidi (b) 254, 1 (2017). [18] G. H. Gweon et al. Direct observation of complete Fermi surface, imperfect nesting, and gap anisotropy in the high-temperature incommensurate charge-density-wave compound SmTe3. Phys. Rev. Lett. 81, 886 (1998). [19] K. Zhang et al. Evidence for a quasi-one-dimensional charge density wave in CuTe by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 121, 206402 (2018). [20] P. Chen et al. Dimensional effects on the charge density waves in ultrathin films of TiSe2. Nano Lett. 16, 6331 (2016). [21] W. Lee et al. Momentum-resolved electronic structures of a monolayer-MoS2 / multilayer - MoSe2 Heterostructure. J. Phys. Chem. C 125, 16591 (2021). [22] H. Nakamura et al. Spin splitting and strain in epitaxial monolayer WSe2 on graphene. Phys. Rev. B 101, 165103 (2020). [23] H. Zhang et al. Angle-resolved photoemission spectroscopy. Nat. Rev. Methods Primers 2, 54 (2022). [24] A. Damascelli et al. Probing the electronic structure of complex systems by ARPES. Phys. Scr. 2004, 61 - 74 (2004). [25] P. Chen et al. Hidden order and dimensional crossover of the charge density waves in TiSe2. Sci. Rep. 6, 37910 (2016). [26] C. M. Cheng et al. Tight-binding parameters of graphite determined with angle-resolved photoemission Spectra. Appl. Surf. Sci. 354, 229 (2015). [27] T. Shimojima et al. Low-temperature and high-energy-resolution laser photoemission spectroscopy. J. Phys. Soc. Jpn. 84, 072001 (2015). [28] C. Y. Tang et al. Antinodal kink in the band dispersion of electron-doped cuprate La2−xCexCuO4±δ. Npj Quantum Mater. 7, 4 (2022). [29] J. Zhao et al. Spectroscopic fingerprints of many-body renormalization in 1T-TiSe2, Phys. Rev. B 100, 045106 (2019). [30] K. Sugawara et al. Anomalous quasiparticle lifetime and strong electron-phonon coupling in graphite. Phys. Rev. Lett. 98, 19 (2007). [31] M. Lindroos et al. Matrix element effects in angle-resolved photoemission from Bi2Sr2CaCu2O8: Energy and polarization dependencies, final state spectrum, spectral signatures of specific transitions, and related issues. Phys. Rev. B 65, 054514 (2002). [32] R. P. Day et al. Computational framework chinook for angle-resolved photoemission spectroscopy. Npj Quantum Mater. 4, 54 (2019). [33] A. Damascelli et al. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473 (2003). [34] H. Iwasawa et al. Interplay among coulomb interaction, spin-orbit interaction, and multiple electron-boson interactions in Sr2RuO4. Phys. Rev. Lett. 105, 226406 (2010). [35] H. Iwasawa et al. Rotatable High-Resolution ARPES System for Tunable Linear-Polarization Geometry. J. Synchrotron Rad. 24, 836 - 841 (2017) [36] A. Mcpherson et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595 - 601 (1987) [37] P. B. Corkum, Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994 - 1997 (1993). [38] K. J. Schafer et al. Nonlinear effects in electron and photon emission from atoms in intense laser fields. J. Nonlinear Opt. Phys. Mater. 01, 245 - 264 (1992) [39] T. Popmintchev et al. The attosecond nonlinear optics of bright coherent x-ray generation. Nature Photon 4, 822 - 832 (2010) [40] T. Pfeifer et al. Femtosecond x-ray science. Rep. Prog. Phys. 69, 443 (2006). [41] K. J. Schafer et al. Above Threshold Ionization Beyond the High Harmonic Cutoff. Phys. Rev. Lett. 70, 1599 (1993). [42] P. C. Huang et al. Polarization control of isolated high-harmonic pulses. Nature Photon. 12, 349 - 354 (2018). [43] S. Eich et al. Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:sapphire lasers. J. Electron Spectrosc. Relat. Phenom. 195, 231 - 236 (2014). [44] H. W. Sun et al. Extended phase matching of high harmonic generation by plasma-induced defocusing. Optica 4, 976 (2017). [45] C. G. Durfee et al. Phase matching of high-order harmonics in hollow waveguides. Phys. Rev. Lett. 83, 2187 (1999). [46] P. Balcou et al. Generalized phase-matching conditions for high harmonics: The role of field-gradient forces. Phys. Rev. A 55, 3204 (1997). [47] A. Rundquist et al. Phase-matched generation of coherent soft x-rays. Science 280, 1412 - 1415 (1998) [48] T. Popmintchev et al. Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers. Science 336, 1287 - 1291 (2012). [49] T. Popmintchev et al. Phase matching of high harmonic generation in the soft and hard x-ray regions of the spectrum. Proc. Natl. Acad. Sci. 106, 10516 (2009). [50] Y. Yang et al. A time- and angle-resolved photoemission spectroscopy with probe photon energy up to 6.7 eV. Rev. Sci. Instrum. 90, 063905 (2019). [51] M. Hajlaoui et al. Ultrafast surface carrier dynamics in the topological insulator Bi2Te3, Nano Lett. 12, 31 (2012). [52] M. Neupane et al. Gigantic surface lifetime of an intrinsic topological insulator. Phys. Rev. Lett. 115, 116801 (2015). [53] B. Frietsch et al. A high-order harmonic generation apparatus for time-and angle-resolved photoelectron spectroscopy. Rev. Sci. Instrum. 841, 075106 (2013). [54] S. Hellmann et al. Vacuum space-charge effects in solid-state photoemission. Phys. Rev. B 79, 035402 (2009). [55] L. P. Oloff et al. Pump laser-induced space-charge effects in HHG-driven time- and angle-resolved photoelectron spectroscopy. J. Appl. Phys. 119, 225106 (2016). [56] M. Puppin et al. Time- and angle-resolved photoemission spectroscopy of solids in the extreme ultraviolet at 500 kHz repetition rate. Rev. Sci. Instrum 90, 23104 (2019). [57] P. Sulzer et al. Cavity-enhanced field-resolved spectroscopy. Nat. Photon. 16, 692 (2022). [58] K. D. Moll et al. Nonlinear dynamics inside femtosecond enhancement cavities. Opt. Express 13, 1672 (2005). [59] F. Brizuela et al. Efficient high-order harmonic generation boosted by below-threshold harmonics. Sci. Rep. 3, 1 (2013). [60] T. Nagy et al. High-energy few-cycle pulses: Post-compression techniques. Adv. Phys. X 6, 1845795 (2021). [61] G. Rohde et al. Time-resolved ARPES with sub-15 fs temporal and near fourier-limited spectral resolution. Rev. Sci. Instrum. 87, 103102 (2016). [62] M. Keunecke et al. Time-resolved momentum microscopy with a 1 MHz high-harmonic extreme ultraviolet beamline. Rev. Sci. Instrum. 91, 063905 (2020). [63] C. Guo et al. Compact 200 kHz HHG source driven by a few-cycle OPCPA. European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference. paper CF_7_3 (2017) [64] Y. C. Cheng et al. Supercontinuum generation in a multi-plate medium. Opt. Express 24, 7224 (2016). [65] C. H. Lu et al. Generation of intense supercontinuum in condensed media. Optica 1, 400 (2014). [66] J. E. Beetar et al. Spectral broadening and pulse compression of a 400 μJ, 20 W Yb:KGW laser using a multi-plate medium. Appl. Phys. Lett. 112, 051102 (2018). [67] C. H. Lu et al. Greater than 50 times compression of 1030 nm Yb:KGW laser pulses to single-cycle duration. Opt. Express 27, 15638-15648 (2019) [68] B. H. Chen et al. Double-pass multiple-plate continuum for high-temporal-contrast nonlinear pulse compression. Front. Photonics 3, 2673 - 6853 (2022). [69] L. Silletti et al. Dispersion-engineered multi-pass cell for single-stage post-compression of an ytterbium laser. Opt. Lett. 48, 1842 (2023). [70] F. Köttig et al. Efficient single-cycle pulse compression of an ytterbium fiber laser at 10 MHz repetition rate. Opt. Express 28, 9099 (2020). [71] T. Okamoto et al. Operation at 1 MHz of 1.7-cycle multiple plate compression at 35 W average output power. Opt. Lett. 48, 2579 (2023). [72] R. R. Alfano et al. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592 (1970). [73] F. Shimizu et al. Frequency broadening in liquids by a short light pulse. Phys. Rev. Lett. 19, 1097 (1967). [74] R. H. Stolen et al. Self-phase-modulation in silica optical fibers. Phys. Rev. A 17, 1448 (1978). [75] H. H. Jia et al. Enhance high harmonic generation (HHG) efficiency via compact multi-plate continuum post-compression for time-resolved angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 94, 055106 (2023). [76] J. R. Sutherland et al. High harmonic generation in a semi-infinite gas cell. Opt. Express 12, 4430 - 4436 (2004) [77] A. Von Conta et al. A table-top monochromator for tunable femtosecond XUV pulses generated in a semi-infinite gas cell: experiment and simulations. Rev. Sci. Instrum. 87, 073102 (2016) [78] D. S. Steingrube et al. Phase matching of high-order harmonics in a semi-infinite gas cell. Phys. Rev. A 80, 043819 (2009). [79] Jean-Claude Diels et al. Ultrashort Laser Pulse Phenomena. 2nd edition, Academic Press (2006). [80] L. Poletto et al. Single-grating monochromators for extreme-ultraviolet ultrashort pulses. Appl. Sci. 3, 1 - 13 (2013). [81] L. Poletto et al. Time-delay compensated monochromator for the spectral selection of extreme-ultraviolet high-order laser harmonics. Rev. Sci. Instrum. 80, 123109 (2009). [82] J. Ojeda et al. Harmonium: A pulse preserving source of monochromatic extreme ultraviolet (30 - 110 eV) radiation for ultrafast photoelectron spectroscopy of liquids. Struct. Dyn. 3, 023602 (2016) [83] W. Zheng et al. Ultrafast extreme ultraviolet photoemission electron microscope. Rev. Sci. Instrum. 92, 043709 (2021). [84] L. Poletto et al. Ultrafast grating instruments in the extreme ultraviolet. IEEE J. Sel. Top. Quantum Electron. 18, 467 (2012). [85] Y. Ishida et al. Time-resolved photoemission apparatus achieving sub-20-meV energy resolution and high stability. Rev. Sci. Instrum. 85, 123904 (2014). [86] Y. Ishida et al. Non-thermal hot electrons ultrafastly generating hot optical phonons in graphite. Sci. Rep. 1, 64 (2011) [87] M. Breusing et al. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102, 086809 (2009). [88] K. S. Novoselov et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005). [89] R. R. Nair et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308-1308 (2008). [90] C. Lee et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388 (2008). [91] M. R. Bin Shahadat et al. A molecular dynamics study of thermal transportation of graphene sheet with various temperature. AIP Conf. Proc. 1980, 050008 (2018). [92] G. Xing et al. The physics of ultrafast saturable absorption in graphene. Opt. Express 18, 4564 (2010). [93] A. Marini et al. Theory of graphene saturable absorption. Phys. Rev. B 95, 125408 (2017). [94] J. H. Chen et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206 (2008). [95] W. Liu et al. Nano-graphite prepared by rapid pulverization as anode for lithium-ion batteries. Materials 15, 5148 (2022). [96] Q. Cheng et al. Graphene-like-graphite as fast-chargeable and high-capacity anode materials for lithium ion batteries. Sci. Rep. 7, 14782 (2017). [97] Y. Wen et al. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014). [98] B. S. Lee et al. SiO-induced thermal instability and interplay between graphite and sio in graphite/SiO composite anode. Nat. Commun. 14, 150 (2023). [99] H. J. Lee et al. Graphene nanomaterials-based radio-frequency/microwave biosensors for biomaterials detection. Materials. 12, 952 (2019) [100] A. H. Castro Neto et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009). [101] J. C. Slonczewski et al. Band structure of graphite. Phys. Rev. 109, 272 (1958). [102] J. W. McClure et al. Band structure of graphite and De Haas-Van Alphen effect. Phys. Rev. 108, 612 (1957). [103] A. Grüneis et al. Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene. Phys. Rev. B 78, 205425 (2008). [104] S. Y. Zhou et al. First direct observation of dirac fermions in graphite. Nature Phys 2, 595 - 599 (2006). [105] J. C. Johannsen et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013). [106] J. C. W. Song et al. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012). [107] T. V. Alencar et al. Defect-induced supercollision cooling of photoexcited carriers in graphene. Nano Lett. 14, 5621 (2014). [108] A. C. Betz et al. Supercollision cooling in undoped graphene. Nat. Phys. 9, 109 (2013). [109] I. Gierz et al. Tracking primary thermalization events in graphene with photoemission at extreme time scales. Phys. Rev. Lett. 115, 086803 (2015). [110] I. Gierz et al. Probing carrier dynamics in photo-excited graphene with time-resolved ARPES. J. Electron Spectros. Relat. Phenomena 219, 53 (2017). [111] A. Stange et al. Hot electron cooling in graphite: supercollision versus hot phonon decay. Phys. Rev. B 92, 184303 (2015). [112] H. Yan et al. Time-resolved Raman spectroscopy of optical phonons in graphite: phonon anharmonic coupling and anomalous stiffening. Phys. Rev. B 80, 121403 (2009). [113] C. W. Luo et al. Dirac fermion relaxation and energy loss rate near the fermi surface in monolayer and multilayer graphene. Nanoscale 6, 8575 (2014). [114] I. T. Lin et al. Terahertz optical properties of multilayer graphene: Experimental observation of strong dependence on stacking arrangements and misorientation angles. Phys. Rev. B 86, 235446 (2012). [115] S. Winnerl et al. Carrier relaxation in epitaxial graphene photoexcited near the dirac point. Phys. Rev. Lett. 107, 237401 (2011). [116] L. M. Malard et al. Observation of intra- and inter-band transitions in the transient optical response of graphene. New J. Phys. 15, 015009 (2013). [117] M. Scheuch et al. Temperature dependence of ultrafast phonon dynamics in graphite. Appl. Phys. Lett. 99, 211908 (2011). [118] S. Winnerl et al. Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: Relaxation dynamics and saturation behavior. J. Phys. Condens. Matter 25, 054202 (2013). [119] S. Ulstrup et al. Extracting the temperature of hot carriers in time- and angle-resolved photoemission. Rev. Sci. Instrum. 85, 013907 (2014). [120] T. Li et al. Femtosecond population inversion and stimulated emission of dense dirac fermions in graphene. Phys. Rev. Lett. 108, 167401 (2012). [121] R. Yin et al. Clarifying the intrinsic nature of the phonon-induced gaps of graphite in the spectra of scanning tunneling microscopy/spectroscopy. Phys. Rev. B 102, 115410 (2020). [122] M. Orlita et al. Dirac fermions at the h point of graphite: Magnetotransmission studies. Phys. Rev. Lett. 100, 136403 (2008). [123] P. Giannozzi et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). [124] J. P. Perdew et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). [125] D. R. Hamann et al. Optimized norm-conserving vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013). [126] M. Schlipf et al. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36 (2015). [127] F. Giustino et al. Electron-phonon interaction using wannier functions. Phys. Rev. B 76, 165108 (2007). [128] S. Poncé et al. EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized wannier functions. Comput. Phys. Commun. 209, 116 (2016). [129] T. Kampfrath et al. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys. Rev. Lett. 95, 187403 (2005). [130] J. D. Lee et al. Sharp contrasts in low-energy quasiparticle dynamics of graphite between brillouin zone K and H points. Phys. Rev. Lett. 100, 216801 (2008). [131] C. Monney et al. Revealing the role of electrons and phonons in the ultrafast recovery of charge density wave correlations in 1T-TiSe2. Phys. Rev. B 94, 165165 (2016). [132] M. Zürch et al. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium. Nat. Commun. 8, 15734 (2017). [133] X. C. Nie et al. Transient transition from free carrier metallic state to exciton insulating state in GaAs by ultrafast photoexcitation. New J. Phys. 20, 033015 (2018). |