帳號:guest(52.15.200.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郟浩翔
作者(外文):Jia, Hao-Hsiang
論文名稱(中文):時間和角度解析光電子能譜系統的建立及其對石墨中超快熱電子動力學之研究
論文名稱(外文):Development of the Time and Angle-Resolved Photoemission Spectroscopy System and the Investigation on Ultrafast Dynamics of Hot Electrons in Graphite
指導教授(中文):陳明彰
林秉慧
指導教授(外文):Chen, Ming-Chang
Lin, Ping-Hui
口試委員(中文):鄭澄懋
羅志偉
詹楊皓
口試委員(外文):Cheng, Cheng-Maw
Luo, Chih-Wei
Chan, Yang-Hao
學位類別:博士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:105066507
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:116
中文關鍵詞:時間和角度解析光電子能譜超快光學高次諧波產生石墨動力學
外文關鍵詞:Tr-ARPESUltrafast OpticsHHGgraphitedynamics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:242
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
角度解析光電子能譜(ARPES)是研究固態材料電子能帶結構的有力工具,它提供了新型材料的電子能帶結構在能量及動量方面的資訊。最近,ARPES與超快雷射的結合開闢了新的領域,用於捕獲光激發電子的動態行為,且提供能量、動量和時間相關的訊息。
本論文包括兩部分:在台灣國家同步輻射研究中心(NSRRC)所開發之基於高次諧波產生(HHG)光源的時間及角度解析光電子能譜(Tr-ARPES)系統以及其在石墨中熱電子的超快動力學之研究。 通過多重薄片展頻連續譜技術(MPC)對雷射脈衝進行壓縮,我們有效地提高了高次諧波產生光源的效率。此外,通過使用離面安裝光柵 (off-plane mounted grating),使該系統達到了約165飛秒 (fs) 的時間解析度和 180毫電子伏特 (meV) 的能量解析度,且光子通量達到接近每秒 1011 個光子。 並且,通過時間及角度解析光電子能譜實驗,我們研究光激發後石墨中電子分佈的超快響應。 這些實驗揭示了非熱電子存在於非微擾激發光能量密度條件之下,且其壽命為 284 fs。此外,我們還揭示了在有能帶間隙的 H 點和無能帶間隙的 K 點中,其熱電子弛豫動力學表現的差異。
Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool for studying the electronic structure of solids, it provides direct insight to the electronic structure of novel material with energy and momentum information. More recently, the combination of ARPES with ultrafast lasers has opened up new frontiers for capturing the dynamics of photo-excited electrons, providing the energy, momentum, and time information.
This thesis comprises two parts: The development of the high-order harmonic generation (HHG) light source-based time-resolved ARPES (Tr-ARPES) system in National Synchrotron Radiation Research Center (NSRRC), Taiwan, and the investigation of hot electron dynamics in graphite using the Tr-ARPES system. By employing the multi-plate continuum (MPC) technique for post-compression of laser pulses, we effectively enhance the efficiency of high-order harmonic generation (HHG). Furthermore, with the utilization of an off-plane mounted grating, the system achieves a temporal resolution of 165 fs and an energy resolution of 180 meV, with a photon flux reaching close to 1011 photons/s. Through the Tr-ARPES experiment, we can investigate the ultrafast response of the electron distribution in graphite following photoexcitation. These experiments reveal the existence of non-thermal electrons with a lifetime of 284 fs under non-perturbative pump fluence conditions. Additionally, we uncover the disparity in relaxation dynamics of hot electrons at the gapped H point and gapless K point.
Acknowledgement I
Abstract II
摘要 III
List of Figures VII
List of Tables XV
Chapter 1 Introduction 1
Chapter 2 Backgrounds 5
2.1 Angle-resolved Photoemission Spectroscopy 5
2.1.1 Photoemission Process 7
2.1.2 Basics Principle of Angle-resolved Photoemission Spectroscopy 10
2.2 High Harmonic Generation Light Source 20
2.2.1 Three-Step Model 21
2.2.2 Macroscopic Phase Matching 26
Chapter 3 Tr-ARPES Apparatus 32
3.1 Overview 32
3.2 The Probe Line 38
3.2.1 Multi-plates Continuum Technique 39
3.2.2 The HHG Beamline 44
3.2.3 Off - planed Mounted Grating 47
3.3 The Pump Beam 53
3.4 System Characterization and Stabilization 55
Chapter 4 Ultrafast Dynamics of Hot Electrons in Graphite 65
4.1 Introduction: Graphene and Graphite 65
4.2 Ultrafast Hot electron Dynamics in graphite 80
4.2.1. Quasi-equilibrium and Non-thermal electrons 82
4.2.2. Relaxation dynamics of hot electrons 87
4.2.3. Comparison with the equilibrium high-temperature ARPES data 91
4.2.4. Direct View of kz-dependent hot electron dynamics 94
4.3 Summary 102
Chapter 5 Conclusion 104
References 107
[1] S. Y. Zhou et al. Pseudospin-selective Floquet band engineering in black phosphorus. Nature 614, 75 (2023).
[2] J. H. Buss et al. A setup for extreme-ultraviolet ultrafast angle-resolved photoelectron spectroscopy at 50-kHz repetition rate. Rev. Sci. Instrum 90, 023105 (2019).
[3] A. K. Mills et al. Cavity-enhanced high harmonic generation for extreme ultraviolet time- and angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 90, 083001 (2019).
[4] E. J. Sie et al. Time-resolved XUV ARPES with tunable 24 - 33 eV laser pulses at 30 meV resolution. Nat. Commun. 10, 3535 (2019).
[5] Y. Liu et al. Extreme ultraviolet time- and angle-resolved photoemission setup with 21.5 meV resolution using high-order harmonic generation from a turn-key Yb:KGW amplifier. Rev. Sci. Instrum. 91, 013102 (2020).
[6] I. Gierz et al. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nat. Mater. 12, 1119 (2013).
[7] S. Ulstrup et al. Ultrafast dynamics of massive Dirac fermions in bilayer graphene. Phys. Rev. Lett. 112, 257401 (2014).
[8] J. A. Sobota et al. Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3. Phys. Rev. Lett. 108, 117403 (2012).
[9] S. Zhu et al. Ultrafast electron dynamics at the Dirac node of the topological insulator Sb2Te3. Sci. Rep. 5, 13213 (2015).
[10] R. Y. Liu et al., Femtosecond to picosecond transient effects in WSe2 observed by pump-probe angle-resolved photoemission spectroscopy. Sci. Rep. 7, 15981 (2017).
[11] S. K. Sundaram et al. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 1, 217 (2002).
[12] S. Parham et al. Ultrafast gap dynamics and electronic interactions in a photoexcited cuprate superconductor. Phys. Rev. X. 7, 041013 (2012).
[13] C. L. Smallwood et al. Tracking cooper pairs in a cuprate superconductor by ultrafast angle-resolved photoemission. Science 336, 1137-1139 (2012)
[14] T. Rohwer et al. Time-domain classification of charge-density-wave insulators, Nat Commun. 3, 1069 (2012).
[15] F. Schmitt et al. Transient electronic structure and melting of a charge density wave in TbTe3. Science 321, 1649 - 1652 (2008).
[16] B. Lv et al. Angle-resolved photoemission spectroscopy and its application to topological materials. Nat. Rev. Phys. 1, 609 - 626 (2019).
[17] I. Avigo et al. Electronic structure and ultrafast dynamics of FeAs-based superconductors by angle- and time- resolved photoemission spectroscopy. Phys. Status Solidi (b) 254, 1 (2017).
[18] G. H. Gweon et al. Direct observation of complete Fermi surface, imperfect nesting, and gap anisotropy in the high-temperature incommensurate charge-density-wave compound SmTe3. Phys. Rev. Lett. 81, 886 (1998).
[19] K. Zhang et al. Evidence for a quasi-one-dimensional charge density wave in CuTe by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 121, 206402 (2018).
[20] P. Chen et al. Dimensional effects on the charge density waves in ultrathin films of TiSe2. Nano Lett. 16, 6331 (2016).
[21] W. Lee et al. Momentum-resolved electronic structures of a monolayer-MoS2 / multilayer - MoSe2 Heterostructure. J. Phys. Chem. C 125, 16591 (2021).
[22] H. Nakamura et al. Spin splitting and strain in epitaxial monolayer WSe2 on graphene. Phys. Rev. B 101, 165103 (2020).
[23] H. Zhang et al. Angle-resolved photoemission spectroscopy. Nat. Rev. Methods Primers 2, 54 (2022).
[24] A. Damascelli et al. Probing the electronic structure of complex systems by ARPES. Phys. Scr. 2004, 61 - 74 (2004).
[25] P. Chen et al. Hidden order and dimensional crossover of the charge density waves in TiSe2. Sci. Rep. 6, 37910 (2016).
[26] C. M. Cheng et al. Tight-binding parameters of graphite determined with angle-resolved photoemission Spectra. Appl. Surf. Sci. 354, 229 (2015).
[27] T. Shimojima et al. Low-temperature and high-energy-resolution laser photoemission spectroscopy. J. Phys. Soc. Jpn. 84, 072001 (2015).
[28] C. Y. Tang et al. Antinodal kink in the band dispersion of electron-doped cuprate La2−xCexCuO4±δ. Npj Quantum Mater. 7, 4 (2022).
[29] J. Zhao et al. Spectroscopic fingerprints of many-body renormalization in 1T-TiSe2, Phys. Rev. B 100, 045106 (2019).
[30] K. Sugawara et al. Anomalous quasiparticle lifetime and strong electron-phonon coupling in graphite. Phys. Rev. Lett. 98, 19 (2007).
[31] M. Lindroos et al. Matrix element effects in angle-resolved photoemission from Bi2Sr2CaCu2O8: Energy and polarization dependencies, final state spectrum, spectral signatures of specific transitions, and related issues. Phys. Rev. B 65, 054514 (2002).
[32] R. P. Day et al. Computational framework chinook for angle-resolved photoemission spectroscopy. Npj Quantum Mater. 4, 54 (2019).
[33] A. Damascelli et al. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473 (2003).
[34] H. Iwasawa et al. Interplay among coulomb interaction, spin-orbit interaction, and multiple electron-boson interactions in Sr2RuO4. Phys. Rev. Lett. 105, 226406 (2010).
[35] H. Iwasawa et al. Rotatable High-Resolution ARPES System for Tunable Linear-Polarization Geometry. J. Synchrotron Rad. 24, 836 - 841 (2017)
[36] A. Mcpherson et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595 - 601 (1987)
[37] P. B. Corkum, Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994 - 1997 (1993).
[38] K. J. Schafer et al. Nonlinear effects in electron and photon emission from atoms in intense laser fields. J. Nonlinear Opt. Phys. Mater. 01, 245 - 264 (1992)
[39] T. Popmintchev et al. The attosecond nonlinear optics of bright coherent x-ray generation. Nature Photon 4, 822 - 832 (2010)
[40] T. Pfeifer et al. Femtosecond x-ray science. Rep. Prog. Phys. 69, 443 (2006).
[41] K. J. Schafer et al. Above Threshold Ionization Beyond the High Harmonic Cutoff. Phys. Rev. Lett. 70, 1599 (1993).
[42] P. C. Huang et al. Polarization control of isolated high-harmonic pulses. Nature Photon. 12, 349 - 354 (2018).
[43] S. Eich et al. Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:sapphire lasers. J. Electron Spectrosc. Relat. Phenom. 195, 231 - 236 (2014).
[44] H. W. Sun et al. Extended phase matching of high harmonic generation by plasma-induced defocusing. Optica 4, 976 (2017).
[45] C. G. Durfee et al. Phase matching of high-order harmonics in hollow waveguides. Phys. Rev. Lett. 83, 2187 (1999).
[46] P. Balcou et al. Generalized phase-matching conditions for high harmonics: The role of field-gradient forces. Phys. Rev. A 55, 3204 (1997).
[47] A. Rundquist et al. Phase-matched generation of coherent soft x-rays. Science 280, 1412 - 1415 (1998)
[48] T. Popmintchev et al. Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers. Science 336, 1287 - 1291 (2012).
[49] T. Popmintchev et al. Phase matching of high harmonic generation in the soft and hard x-ray regions of the spectrum. Proc. Natl. Acad. Sci. 106, 10516 (2009).
[50] Y. Yang et al. A time- and angle-resolved photoemission spectroscopy with probe photon energy up to 6.7 eV. Rev. Sci. Instrum. 90, 063905 (2019).
[51] M. Hajlaoui et al. Ultrafast surface carrier dynamics in the topological insulator Bi2Te3, Nano Lett. 12, 31 (2012).
[52] M. Neupane et al. Gigantic surface lifetime of an intrinsic topological insulator. Phys. Rev. Lett. 115, 116801 (2015).
[53] B. Frietsch et al. A high-order harmonic generation apparatus for time-and angle-resolved photoelectron spectroscopy. Rev. Sci. Instrum. 841, 075106 (2013).
[54] S. Hellmann et al. Vacuum space-charge effects in solid-state photoemission. Phys. Rev. B 79, 035402 (2009).
[55] L. P. Oloff et al. Pump laser-induced space-charge effects in HHG-driven time- and angle-resolved photoelectron spectroscopy. J. Appl. Phys. 119, 225106 (2016).
[56] M. Puppin et al. Time- and angle-resolved photoemission spectroscopy of solids in the extreme ultraviolet at 500 kHz repetition rate. Rev. Sci. Instrum 90, 23104 (2019).
[57] P. Sulzer et al. Cavity-enhanced field-resolved spectroscopy. Nat. Photon. 16, 692 (2022).
[58] K. D. Moll et al. Nonlinear dynamics inside femtosecond enhancement cavities. Opt. Express 13, 1672 (2005).
[59] F. Brizuela et al. Efficient high-order harmonic generation boosted by below-threshold harmonics. Sci. Rep. 3, 1 (2013).
[60] T. Nagy et al. High-energy few-cycle pulses: Post-compression techniques. Adv. Phys. X 6, 1845795 (2021).
[61] G. Rohde et al. Time-resolved ARPES with sub-15 fs temporal and near fourier-limited spectral resolution. Rev. Sci. Instrum. 87, 103102 (2016).
[62] M. Keunecke et al. Time-resolved momentum microscopy with a 1 MHz high-harmonic extreme ultraviolet beamline. Rev. Sci. Instrum. 91, 063905 (2020).
[63] C. Guo et al. Compact 200 kHz HHG source driven by a few-cycle OPCPA. European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference. paper CF_7_3 (2017)
[64] Y. C. Cheng et al. Supercontinuum generation in a multi-plate medium. Opt. Express 24, 7224 (2016).
[65] C. H. Lu et al. Generation of intense supercontinuum in condensed media. Optica 1, 400 (2014).
[66] J. E. Beetar et al. Spectral broadening and pulse compression of a 400 μJ, 20 W Yb:KGW laser using a multi-plate medium. Appl. Phys. Lett. 112, 051102 (2018).
[67] C. H. Lu et al. Greater than 50 times compression of 1030 nm Yb:KGW laser pulses to single-cycle duration. Opt. Express 27, 15638-15648 (2019)
[68] B. H. Chen et al. Double-pass multiple-plate continuum for high-temporal-contrast nonlinear pulse compression. Front. Photonics 3, 2673 - 6853 (2022).
[69] L. Silletti et al. Dispersion-engineered multi-pass cell for single-stage post-compression of an ytterbium laser. Opt. Lett. 48, 1842 (2023).
[70] F. Köttig et al. Efficient single-cycle pulse compression of an ytterbium fiber laser at 10 MHz repetition rate. Opt. Express 28, 9099 (2020).
[71] T. Okamoto et al. Operation at 1 MHz of 1.7-cycle multiple plate compression at 35 W average output power. Opt. Lett. 48, 2579 (2023).
[72] R. R. Alfano et al. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592 (1970).
[73] F. Shimizu et al. Frequency broadening in liquids by a short light pulse. Phys. Rev. Lett. 19, 1097 (1967).
[74] R. H. Stolen et al. Self-phase-modulation in silica optical fibers. Phys. Rev. A 17, 1448 (1978).
[75] H. H. Jia et al. Enhance high harmonic generation (HHG) efficiency via compact multi-plate continuum post-compression for time-resolved angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 94, 055106 (2023).
[76] J. R. Sutherland et al. High harmonic generation in a semi-infinite gas cell. Opt. Express 12, 4430 - 4436 (2004)
[77] A. Von Conta et al. A table-top monochromator for tunable femtosecond XUV pulses generated in a semi-infinite gas cell: experiment and simulations. Rev. Sci. Instrum. 87, 073102 (2016)
[78] D. S. Steingrube et al. Phase matching of high-order harmonics in a semi-infinite gas cell. Phys. Rev. A 80, 043819 (2009).
[79] Jean-Claude Diels et al. Ultrashort Laser Pulse Phenomena. 2nd edition, Academic Press (2006).
[80] L. Poletto et al. Single-grating monochromators for extreme-ultraviolet ultrashort pulses. Appl. Sci. 3, 1 - 13 (2013).
[81] L. Poletto et al. Time-delay compensated monochromator for the spectral selection of extreme-ultraviolet high-order laser harmonics. Rev. Sci. Instrum. 80, 123109 (2009).
[82] J. Ojeda et al. Harmonium: A pulse preserving source of monochromatic extreme ultraviolet (30 - 110 eV) radiation for ultrafast photoelectron spectroscopy of liquids. Struct. Dyn. 3, 023602 (2016)
[83] W. Zheng et al. Ultrafast extreme ultraviolet photoemission electron microscope. Rev. Sci. Instrum. 92, 043709 (2021).
[84] L. Poletto et al. Ultrafast grating instruments in the extreme ultraviolet. IEEE J. Sel. Top. Quantum Electron. 18, 467 (2012).
[85] Y. Ishida et al. Time-resolved photoemission apparatus achieving sub-20-meV energy resolution and high stability. Rev. Sci. Instrum. 85, 123904 (2014).
[86] Y. Ishida et al. Non-thermal hot electrons ultrafastly generating hot optical phonons in graphite. Sci. Rep. 1, 64 (2011)
[87] M. Breusing et al. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102, 086809 (2009).
[88] K. S. Novoselov et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005).
[89] R. R. Nair et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308-1308 (2008).
[90] C. Lee et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388 (2008).
[91] M. R. Bin Shahadat et al. A molecular dynamics study of thermal transportation of graphene sheet with various temperature. AIP Conf. Proc. 1980, 050008 (2018).
[92] G. Xing et al. The physics of ultrafast saturable absorption in graphene. Opt. Express 18, 4564 (2010).
[93] A. Marini et al. Theory of graphene saturable absorption. Phys. Rev. B 95, 125408 (2017).
[94] J. H. Chen et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206 (2008).
[95] W. Liu et al. Nano-graphite prepared by rapid pulverization as anode for lithium-ion batteries. Materials 15, 5148 (2022).
[96] Q. Cheng et al. Graphene-like-graphite as fast-chargeable and high-capacity anode materials for lithium ion batteries. Sci. Rep. 7, 14782 (2017).
[97] Y. Wen et al. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014).
[98] B. S. Lee et al. SiO-induced thermal instability and interplay between graphite and sio in graphite/SiO composite anode. Nat. Commun. 14, 150 (2023).
[99] H. J. Lee et al. Graphene nanomaterials-based radio-frequency/microwave biosensors for biomaterials detection. Materials. 12, 952 (2019)
[100] A. H. Castro Neto et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).
[101] J. C. Slonczewski et al. Band structure of graphite. Phys. Rev. 109, 272 (1958).
[102] J. W. McClure et al. Band structure of graphite and De Haas-Van Alphen effect. Phys. Rev. 108, 612 (1957).
[103] A. Grüneis et al. Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene. Phys. Rev. B 78, 205425 (2008).
[104] S. Y. Zhou et al. First direct observation of dirac fermions in graphite. Nature Phys 2, 595 - 599 (2006).
[105] J. C. Johannsen et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013).
[106] J. C. W. Song et al. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).
[107] T. V. Alencar et al. Defect-induced supercollision cooling of photoexcited carriers in graphene. Nano Lett. 14, 5621 (2014).
[108] A. C. Betz et al. Supercollision cooling in undoped graphene. Nat. Phys. 9, 109 (2013).
[109] I. Gierz et al. Tracking primary thermalization events in graphene with photoemission at extreme time scales. Phys. Rev. Lett. 115, 086803 (2015).
[110] I. Gierz et al. Probing carrier dynamics in photo-excited graphene with time-resolved ARPES. J. Electron Spectros. Relat. Phenomena 219, 53 (2017).
[111] A. Stange et al. Hot electron cooling in graphite: supercollision versus hot phonon decay. Phys. Rev. B 92, 184303 (2015).
[112] H. Yan et al. Time-resolved Raman spectroscopy of optical phonons in graphite: phonon anharmonic coupling and anomalous stiffening. Phys. Rev. B 80, 121403 (2009).
[113] C. W. Luo et al. Dirac fermion relaxation and energy loss rate near the fermi surface in monolayer and multilayer graphene. Nanoscale 6, 8575 (2014).
[114] I. T. Lin et al. Terahertz optical properties of multilayer graphene: Experimental observation of strong dependence on stacking arrangements and misorientation angles. Phys. Rev. B 86, 235446 (2012).
[115] S. Winnerl et al. Carrier relaxation in epitaxial graphene photoexcited near the dirac point. Phys. Rev. Lett. 107, 237401 (2011).
[116] L. M. Malard et al. Observation of intra- and inter-band transitions in the transient optical response of graphene. New J. Phys. 15, 015009 (2013).
[117] M. Scheuch et al. Temperature dependence of ultrafast phonon dynamics in graphite. Appl. Phys. Lett. 99, 211908 (2011).
[118] S. Winnerl et al. Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: Relaxation dynamics and saturation behavior. J. Phys. Condens. Matter 25, 054202 (2013).
[119] S. Ulstrup et al. Extracting the temperature of hot carriers in time- and angle-resolved photoemission. Rev. Sci. Instrum. 85, 013907 (2014).
[120] T. Li et al. Femtosecond population inversion and stimulated emission of dense dirac fermions in graphene. Phys. Rev. Lett. 108, 167401 (2012).
[121] R. Yin et al. Clarifying the intrinsic nature of the phonon-induced gaps of graphite in the spectra of scanning tunneling microscopy/spectroscopy. Phys. Rev. B 102, 115410 (2020).
[122] M. Orlita et al. Dirac fermions at the h point of graphite: Magnetotransmission studies. Phys. Rev. Lett. 100, 136403 (2008).
[123] P. Giannozzi et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
[124] J. P. Perdew et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
[125] D. R. Hamann et al. Optimized norm-conserving vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).
[126] M. Schlipf et al. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36 (2015).
[127] F. Giustino et al. Electron-phonon interaction using wannier functions. Phys. Rev. B 76, 165108 (2007).
[128] S. Poncé et al. EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized wannier functions. Comput. Phys. Commun. 209, 116 (2016).
[129] T. Kampfrath et al. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys. Rev. Lett. 95, 187403 (2005).
[130] J. D. Lee et al. Sharp contrasts in low-energy quasiparticle dynamics of graphite between brillouin zone K and H points. Phys. Rev. Lett. 100, 216801 (2008).
[131] C. Monney et al. Revealing the role of electrons and phonons in the ultrafast recovery of charge density wave correlations in 1T-TiSe2. Phys. Rev. B 94, 165165 (2016).
[132] M. Zürch et al. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium. Nat. Commun. 8, 15734 (2017).
[133] X. C. Nie et al. Transient transition from free carrier metallic state to exciton insulating state in GaAs by ultrafast photoexcitation. New J. Phys. 20, 033015 (2018).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *