|
[1] J. P. Best, J. Cui, M. M¨ullner, a nd F. Caruso, “Tuning the mechanical properties of nanoporous hydrogel particles via polymer cross-linking,” Langmuir 29, 9824–9831 (2013). [2] M. C. Orilall and U. Wiesner, “Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells,” Chemical Society Reviews 40, 520–535 (2011). [3] T. Frot, W. Volksen, S. Purushothaman, R. Bruce, and G. Dubois, “Application of the protection/deprotection strategy to the science of porous materials,” Advanced Materials 23, 2828–2832 (2011). [4] H. Zhang and A. I. Cooper, “Synthesis and applications of emulsion-templated porous materials,” Soft Matter 1, 107–113 (2005). [5] Y. H. Ho, K. H. Ting, K. Y. Chen, S. W. Liu, W. C. Tian, and P. K. Wei, “Omnidirectional antireflection polymer films nanoimprinted by density-graded nanoporous silicon and image improvement in display panel,” Optics Express 21, 29827–29835 (2013). [6] X. Li, X. Yu, and Y. Han, “Polymer thin films for antireflection coatings,” Journal of Materials Chemistry C 1, 2266–2285 (2013). [7] Xiao, Ming, et al. “Bio-inspired structural colors produced via self-assembly of synthetic melanin nanoparticles,” ACS Nano 9.5: 5454-5460 (2015). [8] C. Pouya, J. T. Overvelde, M. Kolle, J. Aizenberg, K. Bertoldi, J. C. Weaver,
and P. Vukusic, “Characterization of a mechanically tunable gyroid photonic crystal inspired by the butterfly parides sesostris,” Advanced Optical Materials 4, 99–105 (2016). [9] S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photonics (2016). [10] A. Charlesby, “Effect of temperature on the structure of highly polymerized hydrocarbons,”Proceedings of the Physical Society 57, 510 (1945). [11] J. J. Kim, Y. Choi, S. Suresh, and A. Argon, “Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature,” Science 295, 654–657 (2002). [12] X. Li, Y. Zhong, M. Cai, M. P. Balogh, D. Wang, Y. Zhang, R. Li, and X. Sun, “Tinalloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries,” Electrochimica Acta 89, 387–393 (2013). [13] L. Morsdorf, K. G. Pradeep, G. Herzer, A. Kov´acs, R. Dunin -Borkowski, I. Povstugar, G. Konygin, P. Choi, and D. Raabe, “Phase selection and nanocrystallization in cufree soft magnetic fesinbb amorphous alloy upon rapid annealing,” Journal of Applied Physics 119, 124903 (2016). [14] M. Treacy and K. Borisenko, “The local structure of amorphous silicon,” Science 335, 950–953 (2012). [15] J. W. Wang, Y. He, F. Fan, X. H. Liu, S. Xia, Y. Liu, C. T. Harris, H. Li, J. Y. Huang, S. X. Mao et al., “Two-phase electrochemical lithiation in amorphous
silicon,” Nano Letters 13, 709–715 (2013).
[16] C. M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Advanced Energy Materials 2, 628–633 (2012). [17] H. J. Son, W.Wang, T. Xu, Y. Liang, Y.Wu, G. Li, and L. Yu, “Synthesis of fluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic properties,” Journal of the American Chemical Society 133, 1885–1894 (2011). [18] Y. Chen, H. Cui, L. Li, Z. Tian, and Z. Tang, “Controlling micro-phase separation in semi-crystalline/amorphous conjugated block copolymers,” Polymer Chemistry 5, 4441–4445 (2014). [19] J. Haberko and F. Scheffold, “Fabrication of mesoscale polymeric templates for threedimensional disordered photonic materials,” Optics Express 21, 1057–1065 (2013). [20] N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon hyperuniform disordered photonic materials with a pronounced gap in the shortwave infrared,” Advanced Optical Materials 2, 115–119 (2014). [21] P. Van de Witte, P. Dijkstra, J. Van den Berg, and J. Feijen, “Phase separation processes in polymer solutions in relation to membrane formation,” Journal of Membrane Science 117, 1–31 (1996). [22] V. Saranathan, J. D. Forster, H. Noh, S. F. Liew, S. G. Mochrie, H. Cao, E. R. Dufresne, and R. O. Prum, “Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle
x-ray scattering (saxs) analysis of 230 bird species,” Journal of The Royal Society Interface p. rsif20120191 (2012). [23] Carolan, D., et al. “Co-continuous polymer systems: A numerical investigation,” Computational Materials Science 98 (2015): 24-33 (2015). [24] H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Physical Review Letters 101, 238102 (2008). [25] J. Trevino, C. Forestiere, G. Di Martino, S. Yerci, F. Priolo, and L. Dal Negro, “Plasmonic-photonic arrays with aperiodic spiral order for ultra-thin film solar cells,”Optics Express 20, A418–A430 (2012). [26]
Transactions on Antennas and
Propagation 14.3: 302-307 (1966).
[27]
properties and applications,” Applied Optics 15.10: 2328-2332 (1976).
[28] Kymakis, Emmanuel, and Gehan AJ Amaratunga. “Optical properties of polymer-nanotube composites,” Synthetic Metals 142.1-3: 161-167 (2004). [29] Hutchinson, Neal J., et al. “Effective optical properties of highly ordered mesoporous thin films,” Thin Solid Films 518.8: 2141-2146 (2010). [30] Skryabin, I. L., et al. “The consistent application of Maxwell–Garnett effective medium theory to anisotropic composites,” Applied Physics Letters 70.17: 2221-2223 (1997). [31] Hornyak, Gabor L., Charles J. Patrissi, and Charles R. Martin. “Fabrication,
characterization, and optical properties of gold nanoparticle/porous alumina composites: The nonscattering maxwell− garnett limit,” The Journal of Physical Chemistry B101.9: 1548-1555 (1997). [32] Palpant, B., et al. “Optical properties of gold clusters in the size range 2–4 nm,” Physical Review B 57.3 (1998): 1963. [33] Atkinson, Ron, et al. “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Physical Review B 73.23: 235402 (2006). [34] Smith, G. B. “Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure,” Optics Communications 71.5: 279-284 (1989). [35]
approach for modelling optical properties of porous silicon: comparison with experiment,” Physical Status Solidi c 4.6: 1986-1990 (2007). [36]
deposited at different temperatures,” Thin Solid Films 441.1-2: 104-110 (2003).
[37] Yagil, Y., et al. “Scaling theory for the optical properties of semicontinuous metal films,” Physical Review B 43.13: 11342 (1991). [38] Grosso, David, et al. “Highly porous TiO2 anatase optical thin films with cubic mesostructure stabilized at 700 C,” Chemistry of Materials 15.24: 4562-4570 (2003). [39] Martínez ‐Ferrero, Eugenia, et al. “Nanostructured Titanium Oxynitride Porous Thin Films as Efficient Visible‐Active Photocatalysts,” Advanced Functional Materials 17.16: 3348-3354 (2007).
[40] Ederth, J., et al. “Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles,” Physical Review B 68.15: 155410 (2003). [41] Sathiaraj, T. S. “Effect of annealing on the structural, optical and electrical properties of ITO films by RF sputtering under low vacuum level,” Microelectronics Journal 39.12: 1444-1451 (2008). [42] Schmidt, Daniel, and Mathias Schubert. “Anisotropic Bruggeman effective medium approaches for slanted columnar thin films,” Journal of Applied Physics 114.8: 083510 (2013). [43] Simpkin, Ray. “Derivation of Lichtenecker's logarithmic mixture formula from
Maxwell's equations,”
Techniques 58.3: 545-550 (2010).
[44]
[45] Peiponen, Kai-Erik, and Evgeny Gornov. “Description of Wiener bounds of multicomponent composites by barycentric coordinates,” Optics Letters 31.14: 2202-2204 (2006). [46] Braun, Matthew M., and Laurent Pilon. “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496.2: 505-514 (2006).
|