帳號:guest(18.117.158.93)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):魏振宇
作者(外文):Wei, Zhen-Yu
論文名稱(中文):利用矽酸根與氯化鋁溶液生長氧化鋁薄膜於背部形成局部鈍化之多晶矽太陽能電池之研究
論文名稱(外文):Study of Aluminum Oxide Film Formed by Mixing AlCl3 with H2SiO3 Solution on Rear Surface of Multi crystalline Silicon Solar Cell with PERC
指導教授(中文):王立康
指導教授(外文):Wang, Li-Karn
口試委員(中文):陳昇暉
甘炯耀
口試委員(外文):Chen, Sheng-Hui
Gan, Jon-Yiew
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:105066502
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:68
中文關鍵詞:濕式製程鈍化層多晶矽太陽能電池鋁漿銀漿陽離子交換數脂
外文關鍵詞:H2SiO3XPSEQEI-Vannealing temperaturePERC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:70
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本實驗分為兩部分,第一部分為了去除矽酸鈉中的鈉離子,將溶液經過SK1BH陽離子交換數脂過濾形成H2SiO3,使用固定氯化鋁溶液體積加入不同比例的H2SiO3來形成AlSiO3,來塗佈於太陽能電池背部,透過高溫退火來形成氧化鋁薄膜,產生鈍化的效果。實驗中進行少數載子壽命量測實驗,找到最佳退火溫度,再使用XPS縱深分析來檢測薄膜的元素與厚度。

第二部分要找出最佳退火溫度,分別將氧化鋁薄膜進行高溫退火與低溫退火,分別將不同退火溫度進行外部量子效率與效率的量測。SEM量測中使用兩種不同鋁漿來進行實驗,實驗組部分使用PERC鋁漿,參考組部分使用一般鋁漿。以氧化鋁薄膜做為鈍化層,最佳效率退火參數為550℃、10分鐘,使用背部柵狀網版來使背部形成局部背部電場,正面使用致嘉科技公司提供的銀漿漿料來進行電池的製作,最後PERC太陽能電池效率達到12.6%。
In order to remove Na^+ ions in the sodium silicate, the solution was filtered through the SK1BH cation exchange resin to form H2SiO3. An amount of H2SiO3 solution was added to a fixed volume of AlCl3 solution, and the mixed solution was coated on the rear side of a solar cell, and then dried to form a film containing AlSiO3. Afterwards this film went through two steps of thermal processes. In the experiment, lifetime measurements were performed to find the optimum annealing temperature, and XPS measurement was used to estimate the elements and thickness of the deposited film.

The AlSiO3 film was, respectively, subjected to high temperature annealing and low temperature annealing. The EQE and the I-V curve were measured at different annealing temperatures. In the SEM measurement, two kinds of aluminum pastes were used. The experimental group was that using a PERC aluminum paste, and the reference group was that using a normal aluminum paste. We used our aluminum oxide layer as the rear side passivation layer, and the optimum annealing temperature is 550℃ for 10 minutes. The back-side grid-pattern aluminum paste was screen printed, and was found to form local surface field after co-fired with the front-side silver paste. Finally, we got a conversion efficiency of 12.6% for the PERC silicon solar cell in comparison with that of 10.8% for the reference cell.

第一章 序論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究動機 5
第二章 原理 6
2.1 半導體物理 6
2.1.1 半導體材料 6
2.1.2 半導體的鍵結與晶格結構 7
2.1.3 晶體結構 8
2.1.4 半導體能帶與能隙 10
2.1.5 半導體掺雜 14
2.1.6 P-N接面 16
2.2. 太陽能電池原理 18
2.2.1 太陽光光譜特性 18
2.2.2 太陽能電池基本原理 20
2.2.3 太陽能電池照光特性 21
2.2.4 太陽能電池等效電路 23
2.2.5 太陽能電池電性參數 25
2.2.6 太陽能電池的量子效率 28
2.2.7 氧化鋁在太陽能電池背部的效應 29
2.2.8 背部電場效應 30
第三章 研究方法與製程步驟 31
3.1 實驗描述 31
3.2元件製作流程 32
3.2.1 清洗處理(RCA clean) 33
3.2.2 表面粗糙化(Texture) 34
3.2.3 磷擴散(Phosphorus diffusion) 34
3.2.4 磷玻璃去除(PSG Removal) 35
3.2.5 抗反射層沉積(Deposit anti-reflection coating, ARC) 35
3.2.6 太陽能電池背部拋光(Rear side polish) 36
3.2.7 濕式製程生長氧化鋁薄膜 36
3.2.8 退火(anneal) 38
3.2.9 網印(Screen printing) 38
3.2.10 共燒結(co-firing) 38
3.2.11 蒸鍍鋁金屬(E-gun evaporation) 39
3.2.12 邊緣切割 40
3.3 量測儀器 40
3.3.1 少數載子生命週期(Lifetime) 40
3.3.2 X射線光電子能譜儀(x-ray photoelectron spectroscopy) 41
3.3.3 反射儀量測 41
3.3.4 冷場發射掃描式電子顯微鏡 ( FESEM ) 42
3.3.5 太陽能電池IV量測 43
第四章 實驗數據與分析 44
4.1 沉積氧化鋁薄膜之最佳lifetime參數 44
4.1.1 矽酸根溶液比例不同的影響 44
4.1.2 塗佈矽酸根不同退火溫度與時間的影響 46
4.1.3 裸片隨著時間不同之衰減圖 50
4.1.4 裸片使用二次退火之lifetime的變化 51
4.2沉積氧化鋁之XPS分析 52
4.3太陽能電池外部量子效率量測 54
4.4 商業片反射率量測與IQE計算 55
4.5 擴散片片電阻量測 57
4.6太陽能電池不同鋁漿BSF量測 58
4.7太陽能電池I-V效率量測 60
第五章 結論 64
[1] S. R. Wenham and M. A. Green, “Silicon solar cells,” Progress in Photovoltaics: Research and Applications, vol 4, pp.3-33, 1996.
[2] W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” Journal of Applied Physics, vol 4, pp.510-519, 1961.
[3] http://www.ndl.org.tw/docs/publication/24_1/pdf/E1.pdf
[4] Panasonic HIT® Solar Cell Achieves World’s Highest Energy Conversion Efficiency of 25.6% at Research Level.
http://panasonic.co.jp/corp/news/official.data/data.dir/2014/04/en140410-4/en140410-4.html (accessed Nov 30, 2015).
[5] 國家能源科技人才培育計畫-太陽能分類 from
https://sites.google.com/site/ensatptd/tai-yang-guang-dian-fa-dian
[6] https://www.nrel.gov/pv/assets/images/efficiency-chart.png
[7] X. Che, Y. Li, Y. Qu, and S. R. Forrest,“High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency,” Nature Energy, vol 3, pp.422-427, 2018.
[8] 翁敏航編著, “太陽能電池原理、元件、材料、製程與檢測技術,”東華書局, 2010.
[9] H. Fritzsche, “Development in understanding and controlling the staebler-wronski effect in a-Si:H,” Annual Review of Materials Research, vol 31, pp.47-79, 2001.
[10] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Progress in Photovoltaics: Research and Applications, vol 16, pp. 461-466, 2008.
[11] J. Zhao, A. Wang, and M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates,” Solar Energy Materials and Solar Cells, vol 65, pp.429-435, 2001.
[12] N. Sahouane and A. Zerga, “Optimization of antireflection multilayer for industrial crystalline silicon solar cells,” Energy Procedia, vol 44, pp.118-125, 2014.
[13] 中興物理 孫允武,“半導體概論,”from
http://ezphysics.nchu.edu.tw/prophys/condmatt/handouts/chap8semicon/semicond.pdf
[14] 維基百科,“p3混成軌域,”From https://zh.wikipedia.org/wiki/Sp3%E6%9D%82%E5%8C%96
[15] 維基百科,“晶界,”From https://zh.wikipedia.org/wiki/%E6%99%B6%E7%B2%92%E8%BE%B9%E7%95%8C
[16] “半導體物理基本原理”from http://blog.ncue.edu.tw/sys/lib/read_attach.php?id=6921
[17] http://www.wunan.com.tw/www2/download/preview/5DB5.PDF
[18] 台北科技大學 陳隆建“半導體物理基本原理”2017.
[19] P. Hervé and L.K.J. Vandamme, “General relation between refractive index and energy gap in semiconductors” Infrared Physics and Technology vol 35, pp.609-615, 1994.
[20] J. L. Gray, Handbook of photovoltaic science and engineering, The Physics of the Solar Cell, pp.61-112, 2005.
[21] 維基百科‘太陽光’from https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E5%85%89
[22] C. Riordan and R. Hulstrom, “What is an air mass 1.5 spectrum?,” IEEE Conference on Photovoltaic Specialists, vol 2, pp.1085-1088, 1990.
[23] 吳知易 博士‘太陽能電池原理’ pg11 from http://eportfolio.lib.ksu.edu.tw/user/T/H/T098000033-20110511112715.pdf
[24] 國立交通大學應用化學系陳俊太和許千樹, “奈米結構於有機高分子太陽能電池的應用,” TCIA台灣化學科技產業會刊 第十期 2012 March.
[25] F. Ye, W. Deng , W. Guo , R. Liu, D. Chen, Y. Chen, Y. Yang, N. Yuan, J. Ding, Z. Feng, P. P. Altermatt, and P. J. Verlinden, “22.13% efficient industrial p-type mono PERC solar cell ,” IEEE Photovoltaic Specialist Conference, pp.3360-3365, 2016.
[26] C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, “Capacitance–voltage characteristics of Al2O3/AlGaN/GaN structures and state density distribution at Al2O3/AlGaN interface ,” Japanese Journal of Applied Physics, vol 50, pp.021001(1)-021001(6), 1999.
[27] J. Schmidt1, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Progress in Photovoltaics: Research and Applications, vol 16, pp.461-466, 2008.
[28] S. Narasimha, A. Rohatgi, and A. W. Weeber, “An optimized rapid aluminum back surface field technique for silicon solar cells,” IEEE Transactions on Electron Devices, vol 46, pp.1363-1370, 1999.
[29] “多晶矽製絨技術的介紹 ”from https://www.materialsnet.com.tw/DocDnld.aspx?id=24548
[30] D.H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Solar Energy, vol 76, pp.277–283, 2004.
[31] Wikipedia “optical coating” from
https://en.wikipedia.org/wiki/Optical_coating

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *