帳號:guest(3.135.220.208)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):夏李妮
作者(外文):Sharma, shalini
論文名稱(中文):在漸進式時間演化圖上計算旅行推銷員問題
論文名稱(外文):Computation Techniques for Travelling Salesman Problem on Time Evolving Graphs
指導教授(中文):周志遠
指導教授(外文):Chou, Jerry
口試委員(中文):李哲榮
韓永楷
蔡明哲
口試委員(外文):Lee, Che-Rung
Hon, Wing-Kai
Tsai, Ming-Jer
學位類別:博士
校院名稱:國立清華大學
系所名稱:資訊系統與應用研究所
學號:105065859
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:65
中文關鍵詞:旅行商問題時間演化圖增量算法彈性計算分佈式計算並行系統
外文關鍵詞:Travelling salesman problemTime evolving graphincremental algorithmelastic computingdistributed computingparallel systems
相關次數:
  • 推薦推薦:0
  • 點閱點閱:454
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
旅行商問題(TSP)是一個圖問題,已被廣泛應用於許多應用中,特別是在
運輸和物流方面。因為 TSP 是一個 NP 難題,所以最小化 TSP 算法的複雜
度是一個重要的問題。已經提出了許多啟發式算法來計算給定靜態圖的 TSP
路徑。但是對時間演化圖 (TEG)進行了有限的研究,其中圖可能由於更新
事件而隨時間變化,例如邊或頂點上的權重變化。這是一個更具挑戰性的問
題,因為 TSP 計算的速度必須足夠高才能趕上圖更新頻率。最近,為了應對
TEG 的挑戰,已經進行了許多研究工作。然而,它仍然是一個活躍且充滿挑
戰的研究課題。因此,在本論文中,我們通過詳細調查總結了 TEG 的最新
計算技術。我們從三個不同的研究社區收集這些技術:i)用於圖形分析的
數據挖掘社區;ii) 圖算法的理論社區;iii) 圖計算框架的計算社區。我們還
首次嘗試最小化在時間演化圖上求解 TSP 的計算時間。通過探索並行計算
能力和重用之前的計算結果,我們提出了一種分佈式增量 TSP 算法,該算
法可以在以頂點為中心的並行圖計算框架上實現,以有效地在大型變化圖上
找到 TSP 遊歷。我們的增量算法可以以最少的重新計算量保持最短的 TSP
旅程。通過我們的實驗評估,我們表明增量 TSP 算法比分佈式算法快 98%。
我們進一步改進了增量算法的結果,通過使用分而治之的範式來減小問題
的大小,並提出了分區算法 P-TSP 和 Pg-TSP。從我們的實驗結果中,我們
觀察到分區 TSP 算法 (P-TSP 和 Pg-TSP)比增量算法 (I-TSP 和 Ig-TSP)
更快,並且計算時間可以減少到至少一半更多數量的分區。我們還為 P-TSP
和 Pg-TSP 算法提出了三種劃分策略。這三種策略如下:邊尺寸屬性、頂點
尺寸屬性和 k-means 分區。其中,頂點大小屬性顯示最小計算時間。我們
還對所有增量和分區算法進行了複雜度分析。
Travelling salesman problem(TSP) is a graph problem that has been widely used in many applications, especially for transportation and logistics. Because TSP is a NP hard problem, minimizing the complexity of TSP algorithms is an important problem. Many heuristic algorithms have been proposed to compute the TSP tours of a given static graph. But limited studies have been done on time evolving graph~(TEG) where the graph can change over time due to update events, such as weight changes on edges or vertices. It is a more challenging problem because the speed of TSP computations must be high enough to catch up the graph update frequency.
Recently, many research efforts have been made with the aim to address the challenges of TEG. However it remains to be an active and challenged research topic. Therefore, in this thesis, we have summarize the state-of-art computation techniques for TEG by performing a detailed survey. We collect these techniques from three different research communities: i)The data mining community for graph analysis; ii)The theory community for graph algorithm; iii)The computation community for graph computing framework. We also make the very first attempt to minimize the computation time of solving TSP on time evolving graphs. By exploring parallel computing power and reusing previous computing results, we proposed a distributed and incremental TSP algorithm which can be implemented on vertex centric parallel graph computing frameworks to efficiently find TSP tours on large changing graphs. Our incremental algorithm can maintain shortest TSP tour with minimum amount of recomputation. Through our experimental evaluation, we have shown Incremental TSP algorithm is 98% faster than distributed algorithm. We further improve the result of incremental algorithm by using divide and conquer paradigm to reduce the problem size and proposed Partitioning algorithms P-TSP and Pg-TSP. From our experimental results, we have observed partitioning TSP algorithms~(P-TSP and Pg-TSP) are faster than the incremental algorithms~(I-TSP and Ig-TSP), and the computation time can be reduced to at least half with more number of partitions. We have also proposed three partitioning strategies for P-TSP and Pg-TSP algorithms. The three strategies are as follows: Edge size attribute, vertex size attribute and k-means partitioning. Among all of them, vertex size attribute showed the minimum computation time. We have also conducted complexity analysis for all incremental and partitioning algorithm.
1 Chapter 1: Introduction---------1

2 Chapter 2: Literature Review-----5
2.1 Graph processing-----5
2.1.1 Graph analytics-----5
2.1.2 Graph algorithms------9
2.1.3 Graphframeworks------13
2.2 Time evolving graph computation techniques-----16
2.3 TravellingSalesmanAlgorithms-----19
2.4 Summary---------19

3 Chapter 3: Distributed TSP Algorithms------21
3.1 Problem Definition-----22
3.2 D-TSP:DistributedTSP------23
3.3 Dg-TSP:DistributedgreedyTSP-----26
3.4 I-TSP:IncrementalTSPalgorithm-------29
3.5 Ig-TSP:IncrementalgreedyTSP-----33
3.6 P-TSPandPg-TSPalgorithm-------35
3.6.1 Graphpartitioningconstraints-------38

4 Chapter 4: Complexity Analysis------41

5 Chapter 5: Experimental Evaluation------44
5.1 Experimental evaluation of D-TSP, Dg-TSP, I-TSP and Ig-TSP----44
5.1.1 Experiment Design-----44
5.1.2 Discussion of results------45
5.1.3 Tuning parameter-------47
5.2 ExperimentsforP-TSPandPg-TSP-------48
5.2.1 Experiment results for partitioning strategies on P-TSP andPg-TSP----52

6 Chapter 5: Conclusion References-----58

References------60
[1] A.AbdolrashidiandL.Ramaswamy.Continualandcost-effectiveparti- tioning of dynamic graphs for optimizing big graph processing systems. In 2016 IEEE International Congress on Big Data (BigData Congress), pages 18–25, June 2016.
[2] Norah Alotaibi and Delel Rhouma. A review on community struc- tures detection in time evolving social networks. Journal of King Saud University-Computer and Information Sciences, 2021.
[3] A.AmelioandC.Pizzuti.Anevolutionarydynamicoptimizationframe- work for structure change detection of streaming networks. In 2015 6th International Conference on Information, Intelligence, Systems and Appli- cations (IISA), pages 1–6, July 2015.
[4] Aris Anagnostopoulos, Ravi Kumar, Mohammad Mahdian, Eli Upfal, and Fabio Vandin. Algorithms on evolving graphs. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pages 149–160, New York, NY, USA, 2012. ACM.
[5] Bahman Bahmani, Ravi Kumar, Mohammad Mahdian, and Eli Upfal. Pagerank on an evolving graph. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12, pages 24–32, New York, NY, USA, 2012. ACM.
[6] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25:163–177, 2001.
[7] Giovanni Cesari. Divide and conquer strategies for parallel tsp heuris- tics. Computers & Operations Research, 23(7):681–694, 1996.
[8] P. Chen. An improved genetic algorithm for solving the traveling sales- man problem. In 2013 Ninth International Conference on Natural Com- putation (ICNC), pages 397–401, 2013.
[9] RishanChen,MaoYang,XuetianWeng,ByronChoi,BingshengHe,and Xiaoming Li. Improving large graph processing on partitioned graphs in the cloud. In Proceedings of the Third ACM Symposium on Cloud Com- puting, SoCC ’12, pages 3:1–3:13, New York, NY, USA, 2012. ACM.
[10] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, and Jeffrey Xu Yu. Mon- itoring path nearest neighbor in road networks. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, SIGMOD ’09, pages 591–602, 2009.
[11] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Ki- neograph: Taking the pulse of a fast-changing and connected world. In Proceedings of the 7th ACM European Conference on Computer Systems, EuroSys ’12, pages 85–98, New York, NY, USA, 2012. ACM.
[12] Prasanna Desikan, Nishith Pathak, Jaideep Srivastava, and Vipin Ku- mar. Incremental page rank computation on evolving graphs. In Spe- cial Interest Tracks and Posters of the 14th International Conference on World Wide Web, WWW ’05, pages 1094–1095, New York, NY, USA, 2005. ACM.
[13] Niels Doekemeijer and Ana Lucia Varbanescu. A survey of parallel graph processing frameworks. In Delft University of Technology Paral- lel and Distributed Systems Report Series, 2014.
[14] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1):29–41, 1996.
[15] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. Stinger: High perfor- mance data structure for streaming graphs. In 2012 IEEE Conference on High Performance Extreme Computing, pages 1–5, Sept 2012.
[16] Wenfei Fan, Chunming Hu, and Chao Tian. Incremental graph compu- tations: Doable and undoable. In Proceedings of the 2017 ACM Interna- tional Conference on Management of Data, SIGMOD ’17, pages 155–169, New York, NY, USA, 2017. ACM.
[17] Wenfei Fan, Jianzhong Li, Jizhou Luo, Zijing Tan, Xin Wang, and Yinghui Wu. Incremental graph pattern matching. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, pages 925–936, New York, NY, USA, 2011. ACM.
[18] I. Filippidou and Y. Kotidis. Online and on-demand partitioning of streaming graphs. In 2015 IEEE International Conference on Big Data (Big Data), pages 4–13, Oct 2015.
[19] Yun Gao, Wei Zhou, Jizhong Han, Dan Meng, Zhang Zhang, and Zhiy- ong Xu. An evaluation and analysis of graph processing frameworks on five key issues. In Proceedings of the 12th ACM International Conference on Computing Frontiers, CF ’15, pages 11:1–11:8, New York, NY, USA, 2015. ACM.
[20] Fred Glover and Manuel Laguna. Tabu search I, volume 1. Springer US, 01 1999.
[21] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Car- los Guestrin. Powergraph: Distributed graph-parallel computation on natural graphs. In Proceedings of the 10th USENIX Conference on Oper- ating Systems Design and Implementation, OSDI’12, pages 17–30, Berke- ley, CA, USA, 2012. USENIX Association.
[22] Minyang Han and Khuzaima Daudjee. Giraph unchained: Barrierless asynchronous parallel execution in pregel-like graph processing sys- tems. Proc. VLDB Endow., 8(9):950–961, May 2015.
[23] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Li- dong Zhou, Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. Chronos: A graph engine for temporal graph analysis. In Proceedings of the Ninth European Conference on Computer Systems, EuroSys ’14, pages 1:1–1:14, New York, NY, USA, 2014. ACM.
[24] Stuart Hannabuss. The laws of the web: Patterns in the ecology of information. 54:440–442, 09 2005.
[25] ManfredHoffman,KarlaL.andPadbergandGiovanniRinaldi.Traveling Salesman Problem, pages 1573–1578. Springer, 2013.
[26] John H. Holland. Adaptation in Natural and Artificial Systems: An Intro- ductory Analysis with Applications to Biology, Control and Artificial Intel- ligence. University of Michigan Press, Ann Arbor, MI, 1975.
[27] Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E Gonzalez, and Ion Stoica. {TEGRA}: Efficient {Ad-Hoc} analytics on evolving graphs. In 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21), pages 337–355, 2021.
[28] Hawoong Jeong, S.P. Mason, Albert-Laszlo Barabasi, and Z.N. Oltvai. Lethality and centrality in protein networks. 411:41–2, 06 2001.
[29] Jyun-Sheng Kao and Jerry Chou. Distributed incremental pattern matching on streaming graphs. In Proceedings of the ACM Workshop on High Performance Graph Processing, HPGP ’16, pages 43–50, New York, NY, USA, 2016. ACM.
[30] George Karypis. METIS and ParMETIS, pages 1117–1124. Springer US, Boston, MA, 2011.
[31] M. Kas, K. M. Carley, and L. R. Carley. Incremental closeness centrality for dynamically changing social networks. In 2013 IEEE/ACM Interna- tional Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013), pages 1250–1258, Aug 2013.
[32] J. Kennedy and R. Eberhart. Particle swarm optimization. In Pro- ceedings of ICNN’95 - International Conference on Neural Networks, vol- ume 4, pages 1942–1948 vol.4, 1995.
[33] S.Kirkpatrick,C.D.Gelatt,andM.P.Vecchi.Optimizationbysimulated annealing. Science, 220(4598):671–680, 1983.
[34] N. Kourtellis, G. D. F. Morales, and F. Bonchi. Scalable online between- ness centrality in evolving graphs. IEEE Transactions on Knowledge and Data Engineering, 27(9):2494–2506, Sept 2015.
[35] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph computation on just a pc. In Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation, OSDI’12, pages 31–46, Berkeley, CA, USA, 2012. USENIX Association.
[36] Yi-Hsuan Lee and Sheng-Jia Jian. Effective partitioning mechanisms for time-evolving graphs in the flink system. The Journal of Supercom- puting, 77(11):12336–12354, 2021.
[37] Bao Lin, Xiaoyan Sun, and S. Salous. Solving travelling salesman prob- lem with an improved hybrid genetic algorithm. Journal of Computer and Communications, 04:98–106, 01 2016.
[38] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman problem. Oper. Res., 21(2):498–516, April 1973.
[39] Y.Liu,H.Gao,X.Kang,Q.Liu,R.Wang,andZ.Qin.Fastcommunitydis- covery and its evolution tracking in time-evolving social networks. In 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pages 13–20, Nov 2015.
[40] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph Hellerstein. Graphlab: A new framework for par- allel machine learning. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI’10, page 340–349, Arlington, Virginia, USA, 2010. AUAI Press.
[41] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehn- ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A sys- tem for large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD ’10, pages 135–146, New York, NY, USA, 2010. ACM.
[42] R. J. Meuth and D. C. Wunsch. Divide and conquer evolutionary tsp solution for vehicle path planning. In 2008 IEEE Congress on Evolution- ary Computation (IEEE World Congress on Computational Intelligence), pages 676–681, 2008.
[43] Dan Noyes. The top 20 valuable facebook. Web page, February 2018. Last visited on 07/02/2018.
[44] Pan Junjie and Wang Dingwei. An ant colony optimization algorithm for multiple travelling salesman problem. In First International Confer- ence on Innovative Computing, Information and Control - Volume I (ICI- CIC’06), volume 1, pages 210–213, 2006.
[45] Anatol Rapoport and William J. Horvath. A study of a large sociogram. Behavioral Science, 6(4):279–291, 1961.
[46] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis. Approximate algo- rithms for the traveling salesperson problem. In Proceedings of the 15th Annual Symposium on Switching and Automata Theory (Swat 1974), SWAT ’74, page 33–42, USA, 1974. IEEE Computer Society.
[47] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge- centric graph processing using streaming partitions. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, pages 472–488, New York, NY, USA, 2013. ACM.
[48] SemihSalihogluandJenniferWidom.Gps:Agraphprocessingsystem. In Proceedings of the 25th International Conference on Scientific and Sta- tistical Database Management, SSDBM, New York, NY, USA, 2013. Asso- ciation for Computing Machinery.
[49] ShaliniSharmaandJerryChou.Distributedandincrementaltravelling salesman algorithm on time-evolving graphs. The Journal of Supercom- puting, March 2021.
[50] Xuanhua Shi, Xuan Luo, Junling Liang, Peng Zhao, Sheng Di, Beixin Julie He, and Hai Jin. Frog: Asynchronous graph processing on gpu with hybrid coloring model. IEEE Transactions on Knowledge and Data Engineering, 30:29–42, 2018.
[51] XuanhuaShi,ZhigaoZheng,YongluanZhou,HaiJin,LigangHe,BoLiu, and Qiang-Sheng Hua. Graph processing on gpus: A survey. ACM Com- put. Surv., 50(6):81:1–81:35, January 2018.
[52] Yogesh Simmhan, Alok Gautam Kumbhare, Charith Wickra- maarachchi, Soonil Nagarkar, Santosh Ravi, Cauligi S. Raghavendra, and Viktor K. Prasanna. Goffish: A sub-graph centric framework for large-scale graph analytics. CoRR, abs/1311.5949, 2013.
[53] Panagiotis Symeonidis, Lidija Kirjackaja, and Markus Zanker. Session- based news recommendations using simrank on multi-modal graphs. Expert Systems with Applications, 180:115028, 2021.
[54] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vojnovic. Fennel: Streaming graph partitioning for massive scale graphs. In Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM ’14, pages 333–342, New York, NY, USA, 2014. ACM.
[55] C.L. Valenzuela. A parallel implementation of evolutionary divide and conquer for the tsp. IET Conference Proceedings, pages 499–504(5), Jan- uary 1995.
[56] G. Q. Wang, Jinfu Wang, Mingxi Li, Heng Li, and Yufeng Yuan. Robot path planning based on the travelling salesman problem. In Chemical engineering transactions, volume 46, pages 307–312, 2015.
[57] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small- world’ networks. Nature, 393(6684):440–442, June 1998.
[58] Charith Wickramaarachchi, Marc Frincu, and Viktor Prasanna. En- abling real-time pro-active analytics on streaming graphs. algorithms, 15:18, 2014.
[59] Jinhui Yang, Xiaohu Shi, Maurizio Marchese, and Yanchun Liang. Ant colony optimization method for generalized tsp problem. Progress in Natural Science - PROG NAT SCI, 18, 11 2008.
[60] Pingpeng Yuan, Wenya Zhang, Changfeng Xie, Hai Jin, Ling Liu, and Kisung Lee. Fast iterative graph computation: A path centric approach. In Proceedings of the International Conference for High Performance Com- puting, Networking, Storage and Analysis, SC ’14, pages 401–412, Piscat- away, NJ, USA, 2014. IEEE Press.
[61] Y.Zhang,Q.Gao,L.Gao,andC.Wang.Maiter:Anasynchronousgraph processing framework for delta-based accumulative iterative computa- tion. IEEE Transactions on Parallel & Distributed Systems, 25(8):2091– 2100, Aug. 2014.
[62] P. Zhao, C. Aggarwal, and G. He. Link prediction in graph streams. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pages 553–564, May 2016.
[63] D. Zhou, K. Wang, N. Cao, and J. He. Rare category detection on time- evolving graphs. In 2015 IEEE International Conference on Data Mining, pages 1135–1140, Nov 2015.
Y. Zhou, H. Cheng, and J. X. Yu. Clustering large attributed graphs: An efficient incremental approach. In 2010 IEEE International Conference on Data Mining, pages 689–698, Dec 2010.
[64] Y. Zhou, H. Cheng, and J. X. Yu. Clustering large attributed graphs: An efficient incremental approach. In 2010 IEEE International Conference
on Data Mining, pages 689–698, Dec 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *