帳號:guest(3.145.86.183)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張晏萍
作者(外文):Chang, Yan-Ping
論文名稱(中文):利用以加速度計為基礎的穿戴式裝置即時計算爬階步數及腳步高度變化的研究
論文名稱(外文):An Accelerometer-Based Wearable Device for Real Time Stride Count and Step Height Measurement
指導教授(中文):王俊堯
指導教授(外文):Wang, Chun-Yao
口試委員(中文):許健平
李思慧
口試委員(外文):Sheu, Jang-Ping
Lee, Si-Huei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊系統與應用研究所
學號:105065515
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:19
中文關鍵詞:加速度爬階步數步高復健穿戴式裝置
外文關鍵詞:accelerometeraccelerationstride-countstep-heightwearable-devicestair-climbing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:384
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
許多下肢運動受限患者的復健運動是具有反覆性的,為降低醫療體制中專業人員的工作量,使其資源能夠更有效的為更多患者服務,現今的自動化復健評估系統仍有許多進步空間。對於不同病症,有益於下肢運動受限患者的復健運動也有許多種,其中爬階運動 (stair gait exercise)對於許多下肢運動受限的患者而言是很有效益,可行度也很高的復健運動。因此,本研究提出一套穿戴式系統Smart-Sock,結合九軸感測器以及襪子,除了能夠更精準收集使用者的運動資訊並加以分析外,更解決過往以鞋子結合感測器的研究中,需要準備各種尺寸鞋子的問題。藉由此穿戴式系統,本研究進而探討如何收集使用者在爬階運動的加速度資料,且如何處理從感測器接收到的資料,以及定義爬階運動中每步的步伐階段(stair gait phase),最後計算步數以及垂直運動的位移量。實驗結果在不同的爬階運動中,步數的誤差皆小於2.00%,而步高的計算誤差則皆小於8.23%。
Stair gait exercise is a fundamental exercise of self-rehabilitation for patients or elders. Medical studies have been proven that this activity can enhance the strength of lower limb muscle. However, there are only few systems that can monitor the stair gait exercise and measure the maximum step height in the laboratory.

To analyze the gait phase of stair climbing with the raw data of accelerometer in a wearable device, we propose an IMU-based system equipped on shoes. Furthermore, a novel method of measuring stride count and step height is also proposed. The stride count can be measured in various stair gait exercises, including step-by-step and step-over-step single stage stair climbing, and walking.

The experimental results demonstrated that the proposed system is reliable under many different conditions. The averages of absolute mean errors of stride count in stair-climbing activities and walking activities are about 2.00% and 0.88%, respectively. The averages of absolute mean errors of step height are about 5.12% and 8.23% in step-by-step and step-over-step stair climbing, respectively.
摘要---------------i
Abstract-----------ii
誌謝辭-------------iii
Contents-----------iv
List of Tables-----vi
List of Figures----vii
1 Introduction-----1
2 Method-----------5
2.1 IMU-based system (Smart-Sock)--------------------------------5
2.2 Subjects and procedures--------------------------------------6
2.3 Raw data processing: simple moving average (SMA)-------------6
2.4 Parameter calculation for stair gait phase identification----7
2.5 Segmentation of a stair cycle and calculation for step height-9
3 Results----------14
3.1 Single-step stair-climbing in step-by-step------------------15
3.2 Single-step stair-climbing in step-over-step----------------15
3.3 Walking in a straight line----------------------------------15
4 Conclusion-------17
[1] K.-H. Park, D.-Y. Kim, and T.-H. Kim, "The effect of step climbing exercise on balance and step length in chronic stroke patients," Journal of Physical Therapy Science, vol. 27, no. 11, pp. 3515-3518, 2015.
[2] J.-J Eng, and P.-F. Tang, Gait training strategies to optimize walking ability in people with stroke: a synthesis of the evidence, Journal of Expert Review of Neurotherapeutics, vol. 7, no. 10, pp. 1417-1436, 2007.
[3] T. P. Andriacchi, J. O. Galante, and R. W. Fermier, The influence of total knee-replacement design on walking and stair-climbing, Journal of Bone and Joint Surgery, vol. 64, no. 9, pp. 1328-1335, 1982.
[4] S. Hesse, A. Waldner, and C. Tomelleri, Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients, Journal of NeuroEngineering and Rehabilitation, vol. 7, no. 30, 2010.
[5] H. Yano, S. Tamefusa, N. Tanaka, H. Saitou, and H. Iwata, Gait Rehabilitation System for Stair Climbing and Descending, IEEE Haptics Symposium, pp. 393-400, 2010.
[6] Z. Yang, and Q. Zhang, Low-Cost and Accurate 3D Road Modeling Using Mobile Phone, IEEE Transactions on Mobile Computing, vol. 15, no. 10, pp. 2494-2506, 2016.
[7] M. Munoz-Organero, J. Parker, L. Powell, and S. Mawson, Assessing Walking Strategies Using Insole Pressure Sensors for Stroke Survivors, Sensors (Basel), vol. 16, no. 10, 2016.
[8] S. I. Lee, C. P. Adans-Dester, M. Grimaldi, A. V. Dowling, P. C. Horak, R. M. Black-Schaffer, P. Bonato, and J. T. Gwin, Enabling Stoke Rehabilitation in Home and Community Settings: A Wearable Sensor-Based Approach for Upper-Limb Motor Training, IEEE Journal of Translational Engineering in Health and Medicine, vol. 6, 2018.
[9] W. Yang, C. Xiu, J. Zhang, and D. Yang, A Novel 3D Pedestrian Navigation Method for a Multiple Sensors-Based Foot-Mounted Inertial System, Sensors, vol. 17, no. 11, 2017.
[10] GYRO, Gesture Identification and Control, http://www.gyro.com.tw/gesture.php, 2018 (accessed 25 April 2018).
[11] S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, 2nd Edition, pp. 277-284, 1999.
[12] J.-S. Wang, C.-W. Lin, Y.-T. C. Yang, and Y.-J. Ho, Walking Pattern Classification and Walking Distance Estimation Algorithms Using Gait Phase Information, IEEE Transactions on Biomedical Engineering, vol. 59, no. 10, pp. 2884-2892, 2012.
[13] I. Skog, P. Handel, J.-O. Nilsson, and J. Rantakokko, Zero-Velocity Detection—An Algorithm Evaluation, IEEE Transactions on Biomedical Engineering, vol. 57, no. 11, pp. 2657-2666, 2010.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *