帳號:guest(3.145.65.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳則伸
作者(外文):Chen, Tze-Shen
論文名稱(中文):應用於步態相位切割之加權動態時間規整及最近鄰居圖嵌入演算法
論文名稱(外文):Gait Phase Segmentation using Weighted Dynamic Time Warping and k-Nearest Neighbor Graph Embedding
指導教授(中文):洪樂文
指導教授(外文):Hong, Yao-Win Peter
口試委員(中文):王俊堯
李昀儒
李祈均
口試委員(外文):Wang, Chun-Yao
Lee, Yun-Ju
Lee, Chi-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:105064701
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:51
中文關鍵詞:步態分析動態時間規整最近鄰居法圖嵌入演算法
外文關鍵詞:Gait analysisdynamic time warpingk-nearest neighborsgraph embedding
相關次數:
  • 推薦推薦:0
  • 點閱點閱:500
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
步態相位切割是辨識在一個步態週期中的多個相位之起點與終點的程序,這對於許多基於步態的應用是不可或缺的,像是姿態或疾病的診斷。此研究通常都在受控的臨床環境下完成,亦即是會受限於觀測空間以及觀測日常活動行為的能力。本篇論文提出藉由裝置於受測個體腳部的慣性量測元件(inertial measurement unit)收集步態資訊,並發展出自動步態相位切割的方法,此方法運用了新穎的加權動態時間規整(weighted dynamic time warping)來量測訊號間的距離以及最近鄰居演算法(k-nearest neighbors)來取得步態相位的估計。本篇論文提出的自動步態相位切割的方法能達到相較於傳統恆定百分比例切割的方法較高的F度量(micro f1 score),0.9378,恆定比例的方法僅達到0.8867。此外,為了避免計算測試資料與全部訓練資料之間的動態時間規整距離(DTW distance),本篇論文亦提出最近鄰居圖嵌入演算法(k-nearest neighbor graph embedding),用以將步態訊號投影至能保存動態時間規整距離於歐幾里得空間的低微度向量。此嵌入方法能減少尋找最近鄰居的計算時間並且能估計出高達94%的最近鄰居。
Gait phase segmentation is the process of identifying the start and end points of various phases within a gait cycle, and it is essential to many gait-based applications, e.g., posture or disease diagnosis. This is typically done in a controlled clinical environment, which limits the capture volume and the ability to monitor behavior in daily activities. This work proposes the use of an inertial measurement unit (IMU) mounted on the individual’s foot to gather gait information and develops an automatic gait phase segmentation method utilizing a novel weighted dynamic time warping (DTW) algorithm to measure the distance between signals, and the k-nearest-neighbors algorithm to obtain the gait phase estimates. The proposed automatic gait phase segmentation method achieves a higher micro-F1 score of 0.9378 compared to the conventional constant-percentage segmentation, which achieves only 0.8867. Moreover, to avoid the need for computing the DTW distance between the test signal and all training signals, this work also proposes a k-nearest neighbor graph embedding method that is able to map each gait signal input into a low-dimensional vector that preserves the DTW distance in the Euclidean space. The proposed embedding scheme reduces the computational time of the k-nearest-neighbor search, and achieves a k-nearest-neighbor prediction up to 94% accuracy.
Abstract i
Contents ii
1 Introduction 1
2 Background and Related Works 4
2.1 Background Introduction to Gait Phases . . . . . . . . . . . . . . . . . . . . 4
2.2 Related Works on Gait Phase Segmentation . . . . . . . . . . . . . . . . . . 6
3 System Model 10
4 k-Nearest Neighbors with Weighted Dynamic Time Warping 12
4.1 Weighted Dynamic Time Warping . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Weight Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 k-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 kNN-DistNet Graph Embedding 19
5.1 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Alternative Single-Task Embedding Schemes . . . . . . . . . . . . . . . . . . 26
5.3.1 Distance Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.2 kNN Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Data Collection and Preprocessing 29
6.1 Hardware Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Measurements and Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4 Gait Cycle Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7 Experimental Result 35
8 Conclusion 45
Bibliography 46
[1] Hongyu Zhao and Zhelong Wang and Sen Qiu and Yanming Shen and Jianjun Wang, “IMU-based gait analysis for rehabilitation assessment of patients with gait disorders,” in Proceedings of the International Conference on Systems and Informatics (ICSAI), pp. 622–626, November 2017.
[2] Osama Mazhar, Abu Zeeshan Bari and Ahmad ’Athif Mohd Faudzi, “Real-time gait phase detection using wearable sensors,” in Proceedings of Asian Control Conference (ASCC), pp. 1–4, May 2015.
[3] Tawaki, Yuta and Okano, Toshiaki and Murakami, Toshiyuki and Ohnishi, Kouhei, “Evaluation of gait phase detection methods for walking assist robot,” pp. 1051–1056, 06 2018.
[4] Chester Rei E. Duhaylungsod, Czarina Eloise B. Magbitang, Jan Faith Isaac R. Mercado, George Elison D. Osido, Shannen Andrea C. Pecho and Angelo R. dela Cruz, “Detection of gait abnormality through leg symmetry and temporal parameters,” in Proceedings of IEEE International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), pp. 1–4, December 2017.
[5] Munoz, Beatriz and Jaggy Castano-Pino, Yor and Arango, Juan and Navarro, Andres, “Automated gait analysis using a kinect camera and wavelets,” pp. 1–5, 09 2018.
[6] Donald A. Neumann, Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation. Elsevier Health Sciences, 2013.
[7] Pirker, Walter and Katzenschlager, Regina, “Gait disorders in adults and the elderly,” Wiener Klinische Wochenschrift, vol. 129, no. 3-4, pp. 81–95, 2017.
[8] Gillen, Glen, Stroke rehabilitation: a function-based approach. Elsevier Health Sciences, 2015.
[9] Han, Siyang and Zhang, Hengxing and Wang, Xiao and Xu, Linhai and Zheng, Nanning, “A rehabilitation gait training system for half lower limb disorder,” in Chinese Automation Congress (CAC), pp. 3841–3847, 2017.
[10] Sina Ameli, David Stirling, Fazel Naghdy, Golshah Naghdy and Morteza Aghmesheh, “Assessing the impact of fatigue on gait using inertial sensors,” in Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 307– 312, 2013.
[11] Isamu Tanaka, Shuhei Terada, Ryuichi Tsuchiya, Dai Hanawa and Kimio Oguchi, “Fatigue estimation using foot pressure sensors,” in Proceedings of International Conference on Telecommunications and Signal Processing (TSP), pp. 600–602, 2013.
[12] Jonghee Han and Hyo Son Jeon and Beom Suk Jeon and Kwang Suk Park, “Gait
detection from three dimensional acceleration signals of ankles for the patients with
Parkinson’s disease,” in Proceedings of the IEEE International Special Topic Conference on Information Technology in Biomedicine, 2006.
[13] Andrea Mannini, Diana Trojaniello, Ugo Della Croce and Angelo Maria Sabatini, “Hidden markov model-based strategy for gait segmentation using inertial sensors: Application to elderly, hemiparetic patients and huntington’s disease patients,” in Proceedings of Annual International Conference of IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5179–5182, 2015.
[14] Julius Hannink and Thomas Kautz and Cristian F. Pasluosta and Karl-Gnter Gamann and Jochen Klucken and Bjoern M. Eskofier, “Sensor-based gait parameter extraction with deep convolutional neural networks,” IEEE Journal of Biomedical and Health Informatics, vol. 21, pp. 85–93, January 2017.
[15] Zhen Ding and Chifu Yang and Kai Xing and Xueyan Ma and Kai Yang and Hao Guo and ChunZhi Yi and Feng Jiang, “The real time gait phase detection based on long short-term memory,” in Proceedings of the IEEE International Conference on Data Science in Cyberspace (DSC), pp. 33–38, June 2018.
[16] Jacquelin Perry and Bill Schoneberger, Gait Analysis: Normal and Pathological Function. SLACK, 1992.
[17] Jessica Rose and James Gibson Gamble, Human Walking.
[18] Michael Whittle, Gait analysis: an introduction. Butterworth-Heinemann, 1991.
[19] Behboodi, Ahad and Zahradka, Nicole and Wright, Henry and Alesi, James and Lee, Samuel, “Real-time detection of seven phases of gait in children with cerebral palsy using two gyroscopes,” Sensors, vol. 19, p. 2517, 06 2019.
[20] Roerdink, Melvyn and Coolen, Bert and Clairbois, Bert and Lamoth, Claudine and Beek, Peter, “Online gait event detection using a large force platform embedded in a treadmill,” Journal of biomechanics, vol. 41, pp. 2628–32, 08 2008.
[21] Nimsiri Abhayasinghe and Iain Murray, “Human gait phase recognition based on thigh movement computed using IMUs,” in Proceedings of IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 1–4, April 2014.
[22] Ferhat Attal, Yacine Amirat, Abdelghani Chibani and Samer Mohammed, “Automatic recognition of gait phases using a multiple-regression hidden markov model,” IEEE/ASME Transactions on Mechatronics, vol. 23, pp. 1597–1607, August 2018.
[23] Tawaki, Yuta and Murakami, Toshiyuki, “Verification of the knee exoskeleton controller using novel gait phase detection method,” in Proceedings of IEEE Industrial Electronics Society (IECON), pp. 3304–3309, October 2018.
[24] Yifan David Li and Elizabeth T. Hsiao-Wecksler, “Gait mode recognition and control for a portable-powered ankle-foot orthosis,” in Proceedings of IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–8, June 2013.
[25] Williamson, Richard and Andrews, Brian, “Gait event detection for FES using accelerometers and supervised machine learning,” IEEE Transactions on Rehabilitation Engineering, vol. 8, pp. 312 – 319, 10 2000.
[26] Mileti, Ilaria and Germanotta, Marco and Di SIpio, Enrica and Imbimbo, Isabella and Pacilli, Alessandra and Erra, Carmen and Petracca, Martina and Rossi, Stefano and Del Prete, Zaccaria and Rita Bentivoglio, Anna and Padua, Luca and Palermo, Eduardo, “Measuring gait quality in parkinsons disease through real-time gait phase recognition,” Sensors, vol. 18, p. 919, 03 2018.
[27] Hiroaki Sakoe and Seibi Chiba, “Dynamic programming algorithm optimization for spoken word recognition,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 26, pp. 43–49, February 1978.
[28] Nikolaos V. Boulgouris, Konstantinos N. Plataniotis, and Dimitrios Hatzinako, “Gait recognition using dynamic time warping,” in IEEE Workshop on Multimedia Signal Processing, pp. 263–266, September 2004.
[29] Krzeszowski, Tomasz and witoski, Adam and Kwolek, Bogdan and Josiski, Henryk and Wojciechowski, Konrad, “DTW-based gait recognition from recovered 3-D joint angles and inter-ankle distance,” vol. 8671, pp. 356–363, 09 2014.
[30] Young-Seon Jeong and Myong K. Jeong and Olufemi A. Omitaomu, “Weighted dynamic time warping for time series classification,” Pattern Recognition, vol. 44, no. 9, pp. 2231 – 2240, 2011.
[31] Yu-Cheol Lee and Jaeyeon Lee, “Kinematic constraint method for human gesture recognition based on weighted dynamic time warping,” in Proceedings of the International Conference on IT Convergence and Security (ICITCS), pp. 1–5, September 2016.
[32] Stefan Oehmcke, Oliver Zielinski and Oliver Kramer, “kNN ensembles with penalized DTW for multivariate time series imputation,” in Proceedings of International Joint Conference on Neural Networks (IJCNN), pp. 2774–2781, July 2016.
[33] Chin-Chi Hsu, Perng-Hwa Kung, Mi-Yen Yeh, Shou-De Lin and Phillip Gibbons, “Bandwidth-efficient distributed k-nearest-neighbor search with dynamic time warping,” in Proceedings of IEEE International Conference on Big Data (Big Data), pp. 551– 560, October 2015.
[34] Kais Allab, Lazhar Labiod and Mohamed Nadif, “A Semi-NMF-PCA unified framework for data clustering,” IEEE Transactions on Knowledge and Data Engineering, vol. 29, pp. 2–16, January 2017.
[35] Han, Yufei and Shen, Yun, “Partially supervised graph embedding for positive unlabelled feature selection,” in Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI, pp. 1548–1554, AAAI Press, 2016.
[36] Perozzi, Bryan and Al-Rfou, Rami and Skiena, Steven, “Deepwalk: Online learning of social representations,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 701–710, 2014.
[37] Wang, Daixin and Cui, Peng and Zhu, Wenwu, “Structural deep network embedding,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 1225–1234, 2016.
[38] Xavier Glorot and Yoshua Bengio, “Understanding the difficulty of training deep feedforward neural networks,” Journal of Machine Learning Research - Proceedings Track, vol. 9, pp. 249–256, 01 2010.
[39] Arduino, “https://store.arduino.cc/usa/arduino-micro,” 2017.
[40] Gadaleta, Matteo and Rossi, Michele, “IDNet: Smartphone-based gait recognition with convolutional neural networks,” Pattern Recognition, vol. 74, pp. 25–37, 2018.
[41] Wei Sun and Hao Zhang and Ahmet Palazoglu, “Prediction of 8 h-average ozone concentration using a supervised hidden markov model combined with generalized linear models," Atmospheric Environment, vol. 81, pp. 199-208, 2013.
[42] Tomas Ruzgas, Indr Drulyt, “Kernel density estimators for gaussian mixture models," Lithuanian Journal of Statistics, vol. 52, pp. 14-21, 2013.
[43] Chollet, Francois, Deep Learning with Python. Greenwich, CT, USA: Manning Publications, 1st ed., 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *