帳號:guest(3.137.180.13)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃柏元
作者(外文):Huang, Bo-Yuan
論文名稱(中文):非正交多重接取下行系統之基於非完美通道資訊的功率分配技術
論文名稱(外文):Power Allocation Based on Imperfect Channel State Information for Downlink Non-Orthogonal Multiple Access Systems
指導教授(中文):王晉良
指導教授(外文):Wang, Chin-Liang
口試委員(中文):陳永芳
古聖如
黃昱智
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:105064543
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:33
中文關鍵詞:非正交多重接取非完美通道資訊功率分配技術
外文關鍵詞:Power AllocationImperfect Channel State InformationNon-Orthogonal Multiple Access Systems
相關次數:
  • 推薦推薦:0
  • 點閱點閱:271
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本篇論文中,我們對於非正交多重接取下行系統之功率分配作探討,系統中包含一個單一天線基地台(Base Station)作為訊號源,以及兩個單一天線使用者作為接收端,最後再將使用者的數目從兩個推廣到N個。由於以前都是探討在完美通道資訊的情況下,但實際情況下,通道的估測會有誤差,精確的系統傳送容量不存在解析解(closed-form),所以我們轉而尋找系統傳送容量的下限(lower bound),目標為讓系統傳送容量下限最大化之最佳化問題有解。再經由卡羅需-庫恩-塔克條件(Karush-Kuhn-Tucker conditions)可以得到解來做系統的功率分配,但是不知道這個系統傳送容量下限和實際系統傳送容量的差距多大,所以我們會再去求得一個系統傳送容量上限(upper bound),經由電腦模擬結果顯示,他們之間的差距是非常小的,這也代表我們去最大化系統傳送容量下限所做的功率分配是很貼近實際系統的。


In this thesis, we investigate power allocation for a downlink non-orthogonal multiple access (NOMA) system with a base station and N users under imperfect channel state information (CSI). We first derive the capacity lower bound and upper bound for a single-input single-output (SISO) scenario and show that they are tight for Gaussian inputs. Accordingly, the capacity lower bound can be used as an approximate capacity expression for the SISO case under imperfect CSI. Similar results are also derived for a multiple-input multiple-output (MIMO) scenario. Then, we formulate optimization problems for both the SISO and MIMO cases in terms of power allocation among N users for maximizing the corresponding capacity lower bounds under a total power constraint and a quality-of-service condition such that the minimum rate requirement of each user is satisfied. Low-complexity closed-form optimal power allocation solutions are derived based on the Karush-Kuhn-Tucker (KKT) conditions. Computer simulation results under imperfect CSI show that the proposed methods offer a better average bit error rate performance for all users than the fixed power allocation approach and the previous related optimal schemes under perfect CSI.
Abstract i
Contents ii
List of Figures iii
I. Introduction 1
II. System Model 4
A. SISO Structure 4
B. MIMO Structure 6
III. Closed-From Expressions For Capacity Bounds 7
A. Lower Bound and Upper Bound Derivation for SISO 7
B. Lower Bound and Upper Bound Derivation for MIMO 11
IV. Proposed Power Allocation Methods Baesd on Capacity Lower Bound 15
A. Problem Formulation 15
B. Proposed Power Allocation 16
V. Simulation Results 20
VI. Conclusion 28
Appendix. 29
References 30

[1] Q. C. Li, H. Niu, A. T. Papathanassiou, and G. Wu, “5G network capacity: Key elements and technologies,” IEEE Veh. Technol. Mag., vol. 9, no. 1, pp. 71–78, Mar. 2014.
[2] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014.
[3] A. Gupta and R. K. Jha, “A survey of 5G network: Architecture and emerging technologies,” IEEE Access, vol. 3, pp. 1206–1232, Jul. 2015.
[4] Q. Li, Niu, A. Papathanassiou, and G. Wu, “5G network capacity: Key elements and technologies,”IEEE Veh. Technol. Mag., vol. 9, no. 3,pp.71–78, Mar. 2014.
[5] A. Benjebbour, Y. Saito, Y.Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,”in Proc. IEEE ISPACS, Okinawa, Japan, Dec. 2013.
[6] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, ‘‘Non-orthogonal multiple access (NOMA) for cellular future radio access,’’ in Proc. IEEE Veh. Technol. Conf. (VTC Spring), Jun. 2013, pp. 1–5.
[7] P. Wang, J. Xiao, and L. Ping, “Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems,” IEEE Veh. Technol. Mag., vol. 1, no. 3, pp. 4–11, Sep. 2006.
[8] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505, Dec. 2014.
[9] A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in Proc. IEEE ISPACS, Okinawa, Japan, Nov. 2013, pp. 770–774.
[10] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Pers. Commun., vol. 6, no. 3, pp. 311–335, Mar. 1998.
[11] Q. Sun, S. Han, C.-L. I, and Z. Pan, “On the ergodic capacity of MIMO NOMA systems,” IEEE Wireless Commun. Lett., vol. 4, no. 4, pp. 405–408, Aug. 2015.

[12] C.-L. Wang, J.-Y. Chen, and Y.-J. Chen, “Power allocation for a downlink non-orthogonal multiple access system,” IEEE Wireless Commun. Lett., vol. 5, no 5, pp. 532–535, Aug. 2016.
[13] P.-E, Wu, “User selection and power allocation for detection-performance guarantee in downlink non-orthogonal multiple access systems,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Dec. 2017.
[14] S. Han, S. Ahn, E. Oh, and D. Hong, “Effect of Channel-Estimation Error on BER Performance in Cooperative Transmission,” IEEE Trans. Veh. Technol., vol. 58, no. 4, pp. 2083–2088, May 2009.
[15] H. Wang, Z. Zhang, and X. Chen, “Energy-efficient power allocation for non-orthogonal multiple access with imperfect successive interference cancellation,” in Proc. IEEE International Conference on Wireless Communications and Signal Processing (WCSP’17), Nanjing, CN, Oct. 2017, pp. 1–6.
[16] Z. Zhang, Q. Xia, G. Yu, and R. Liu, “Power control, user scheduling and resource allocation for downlink NOMA systems with imperfect channel state information,” in Proc. IEEE International Conference on Wireless Communications and Signal Processing (WCSP’17), Nanjing, CN, Oct. 2017, pp. 1–6.
[17] W. Cai, C. Chen, L. Bai, Y. Jin, and J. Choi, “User selection and power allocation schemes for downlink NOMA systems with imperfect CSI,” in Proc. IEEE Vehicular Technology Conference (VTC-Fall’16), Montreal, CA, Mar. 2016, pp. 1–5.
[18] F. Alavi, K. Cumanan, Z. Ding, and A. G. Burr, “Robust beamforming techniques for non-orthogonal multiple access systems with bounded channel uncertainties,” IEEE Trans. Commun. Lett., vol. 21, no. 9, pp. 2033–2036, Sep. 2017.

[19] M. Medard, “The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel,” IEEE Trans. Inf. Theory, vol. 46, no. 3, pp. 933–946, May 2000.
[20] C.-L. Wang and J.-Y. Chen, “Power allocation and relay selection for AF cooperative relay systems with imperfect channel estimation,” IEEE Trans. on Veh. Technol., vol. 65, no. 9, pp. 7809–7813, Sep. 2016.
[21] T. Yoo and A. Goldsmith, “Capacity and power allocation for fading MIMO channels with channel estimation error,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2203–2214, May 2006.



 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *