帳號:guest(18.225.156.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳德暉
作者(外文):Chen, De-Hui
論文名稱(中文):裝置到裝置通信的感測多級保密
論文名稱(外文):Cognitive Multi-Level Secrecy Guarantees for Device-to-Device Communications
指導教授(中文):洪樂文
指導教授(外文):Hong, Yao-Win
口試委員(中文):李佳翰
李冕
口試委員(外文):Lee, Chia-Han
Rini, Stefano
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:105064535
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:41
中文關鍵詞:裝置間通訊感知無線電實體層保密隨機幾何資源分配
外文關鍵詞:D2D communicationCognitive radioPhysical-layer securityStochastic geometryResource allocation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:796
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
這篇論文檢驗了裝置到裝置傳輸系統(Device-to-device (D2D) communication system)實體層保密(physical layer security)的效能。在此系統中,裝置使用者會要求不同層級的安全性(secrecy guarantees)且備有感測周圍竊聽者的能力。使用者、竊聽者以及基地台以三層獨立卜瓦松點過程(Poisson point processes)建模。裝置傳輸者暴露在竊聽者偷聽保密訊息的威脅下。我們推得D2D傳輸機率的閉合 (close-form) 形式,以及當D2D傳輸者能確知在偵測範圍內的竊聽者數目下條件洩密機率的緊密上界。該分析亦能沿用到偵測範圍無限大(等價於只知道使用者密度的情況),和偵測範圍分成多層(能夠提供更精確的竊聽者位置資訊)。利用求得的解析結果 (analytic result),我們建立一個最佳化問題,為K層安全層級的D2D傳輸者設定最佳發射功率 (power) 和傳輸率 (rate) ,最大化所有安全層等效流通量總和 (effective sum throughput),附帶預先設定的保密性 (secrecy)、發射功率和傳輸率的限制。我們的結果顯示等效保密工作量(effective secrecy throughput)能在偵測竊
聽者並得知其數目的狀況下大幅增加。
This work examines the effectiveness of physical layer secrecy in (in-band) device-to-device (D2D) communication systems. Here, D2D users may require different levels of secrecy guarantees and are assumed to be equipped with the cognitive capability of sensing the presence of eavesdroppers in its vicinity. Users, eavesdroppers and base stations are modeled as three independent homogeneous Poisson point processes. D2D transmitters are under threat from eavesdroppers overhearing confidential messages. We derive a closed-form expression for the connection outage probability and a tight upper bound on the secrecy outage probability when each D2D transmitter can sense the exact number of eavesdroppers in its sensing area. This analysis can also be applied to cases where the sensing area is infinitely large (which is equivalent to the case where only the user density is known) and where sensing areas can be divided into multiple layers (which provides more accurate location information to the transmitter). Using the derived analytic results, we formulate an optimization problem that aims to jointly and optimally allocate powers and rates for D2D transmitters with K different security levels so as to maximize the effective sum throughput under some predesignated secrecy, power and rate constraints. Our results show that the effective secrecy throughput of the system can be significantly increased with the aid of the cognitive information of the number of the eavesdroppers within the vicinity of a D2D transmitter.
Abstract i
Contents ii
1 Introduction 1
2 System Model 5
3 Secrecy Outage Analysis for Cognitive D2D Communication 9
3.1 Scenario I: Without Information of Nearby Eavesdroppers . . . . . . . . . . 10
3.2 Scenario II: Knowing n Eavesdroppers inside the Cognitive Area . . . . . . . 11
3.2.1 Proof of Upper Bound for Secrecy Outage Probability with Knowing
Number of Eavesdroppers . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Rate and Power Allocation Policies with/without Cognitive Capability 14
4.1 Scenario I: Naive Rate and Power Allocation . . . . . . . . . . . . . . . . . . 14
4.2 Scenario II: Eavesdropper-Number-Based Rate Allocation (Fixed Power) . . 19
5 Extension to the Case with Multi-Layer Cognitive Information 23
5.1 Conditional Secrecy Outage Probability with Knowing Eavesdropper Numbers
in Detection Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.1 Proof of Upper Bound for Secrecy Outage Probability with Knowing
Eavesdropper Numbers in Detection Zones . . . . . . . . . . . . . . . 24
5.2 Detection-Zone-Based Rate Allocation
(Fixed Power) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6 Numerical Simulations 28
7 Conclusion 35
A Proof in Chapter 4 36
A.1 Proof of theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.1.1 Quasi-concavity in ν_k . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.1.2 Quasi-concavity in R_E,k . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.1.3 Quasi-concavity in R_D,k . . . . . . . . . . . . . . . . . . . . . . . . . 37
[1] L. Wang and H. Tang, “Device-to-Device Communications in Cellular Networks,” ser. Springer Briefs in Electrical and Computer Engineering. Springer, 2016.
[2] P. Mach, Z. Becvar, and T. Vanek, “In-band device-to-device communication in ofdma cellular networks: A survey and challenges,” IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp. 1885-1922, Fourthquarter 2015.
[3] O. N. Hamoud, T. Kenaza, and Y. Challal, “Security in device-to-device communications: a survey,” IET Networks, vol. 7, no. 1, pp. 14-22, 2018.
[4] L. Wang, H. Wu, M. Peng, M. Song, and G. Stuber, “Secrecy-oriented resource sharing for cellular device-to-device underlay,” in IEEE Global Commun. Conf. (GLOBECOM), Dec. 2015, pp. 1-5.
[5] H. Zhang, T. Wang, L. Song, and Z. Han, “Radio resource allocation for physical-layer security in D2D underlay communications,” in IEEE Int. Conf. on Commun. (ICC), Jun. 2014, pp. 2319-2324.
[6] K. Zhang, M. Peng, P. Zhang, and X. Li, “Secrecy-optimized resource allocation for device-to-device communication underlaying heterogeneous networks,” IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp. 1822-1834, Feb 2017.
[7] L. Sun, Q. Du, P. Ren, and Y. Wang, “Two birds with one stone: Towards secure
and interference-free D2D transmissions via constellation rotation,” IEEE Trans. Veh.
Technol., vol. 65, no. 10, pp. 8767-8774, Oct. 2016.
[8] A. Mukherjee and A. L. Swindlehurst, “Detecting passive eavesdroppers in the MIMO wiretap channel," in IEEE Int. Conf. on Acoustics, Speech and Signal Proc. (ICASSP), Mar. 2012, pp. 2809-2812.
[9] S. H. Chae, W. Choi, J. H. Lee, and T. Q. S. Quek, “Enhanced secrecy in stochas-
tic wireless networks: Artificial noise with secrecy protected zone,” IEEE Trans. Inf.
Forensics Security, vol. 9, no. 10, pp. 1617-1628, Oct. 2014.
[10] W. Liu, Z. Ding, T. Ratnarajah, and J. Xue, “On ergodic secrecy capacity of random wireless networks with protected zones,” IEEE Trans. Veh. Technol., vol. 65, no. 8, pp. 6146-6158, Aug. 2016.
[11] Y. Cai, X. Xu, and W. Yang, “Secure transmission in the random cognitive radio
networks with secrecy guard zone and artificial noise," IET Communications, vol. 10,
no. 15, pp. 1904-1913, 2016.
[12] X. Xu, B. He, W. Yang, X. Zhou, and Y. Cai, “Secure transmission design for cognitive radio networks with poisson distributed eavesdroppers," IEEE Trans. Inf. Forensics Security, vol. 11, no. 2, pp. 373-387, Feb. 2016.
[13] X. Xu, W. Yang, Y. Cai, and S. Jin, “On the secure spectral-energy efficiency tradeoff in random cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 34, no. 10, pp. 2706-2722, Oct. 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *