帳號:guest(18.226.150.246)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴彥伯
作者(外文):Lai, Yen-Po
論文名稱(中文):巨量天線多重輸入多重輸出系統中基於隨機編碼訓練之具彈性二階段通道估計技術
論文名稱(外文):A Flexible Two-Stage Channel Estimation Scheme based on Random Codebook Training in Massive MIMO Systems
指導教授(中文):蔡育仁
指導教授(外文):Tsai, Yuh-Ren
口試委員(中文):梁耀仁
黃政吉
口試委員(外文):Liang, Yao-Jen
Huang, Jheng-Ji
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:105064533
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:55
中文關鍵詞:巨量天線多重輸入多重輸出系統編碼訓練通道估計彈性
外文關鍵詞:FlexibleChannelEstimationRandomCodebookTrainingMassiveMIMOSystems
相關次數:
  • 推薦推薦:0
  • 點閱點閱:536
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了未來通訊系統高傳輸、容量之需求,巨量天線多重輸入多重輸出系統是現在的研究熱門。而對於無線通訊系統的通道估計上,由於毫米波的高耗損特性,僅僅只有少量的有效路徑能由傳送端到接收端,因此,其整體通道在角域上具有稀疏之特性。基於上述,在做通道估計時,我們可以利用壓縮感知這項技術,其原理是藉由少量的資訊來還原出數量龐大的未知訊號,以使少量的資訊達到有效率的利用。
傳統通道估計方法上,傳送數個正交化波束作為導引訊號,而後依據所接受到的信號大小來決定環境中有效路徑的位置。然而,其所估計到的輻射角、入射角的精確性會為正交化波束之數目所限制。而在相關角度解析度研究上,研究已提出編碼簿來提升角度及通道估計的精確性。然而,對於巨量天線而言,其編碼簿的設計太大,因而致使整體估計的計算複雜度太高。有鑑於此,本文提出一個新的方案,設計一個較小的編碼簿來提高對入射角的估計,而後再利用估計出來的數值更進一步地分析傳送端的輻射角。模擬的結果顯示,相對於他人提出的通道估計方法,本文提出的方法可以讓估計中的計算複雜度大幅下降,而整體通道估計的正確性上也有較好的表現。
In order to achieve higher throughput in next generation communication system, massive MIMO is popular topic in recent study. For the channel estimation in wireless system, due to severe path loss of millimeter wave in the propagation environment, there is only a few effective path between transmitter and receiver. Therefore, the total channel has a characteristic of sparsity in angular domain. Based on above mentioned, for the issue of channel estimation, compressed sensing technique is useful to solve it. The principle of this technique is that we can use a few data information to recover the more unknown signal and it can achieve an efficient use of data source.
For the conventional channel estimation, we estimate the location of effective path in channel according to the strength of received signal by training several orthogonal beams at transmitter. However, there is a limitation of the estimated angle of arrival (AoA) and departure (AoD) in precision with the limited number of orthogonal beams. In order to enhance the precision of these estimated angle, some researcher proposed a codebook to do with this. But, the size of codebook they proposed is too large and make it more complex on computation. Given that this problem, we propose a new scheme for channel estimation – Two-stage scheme: One for estimating AoA by using a small size codebook, and the other for estimating AoD by analyzing the signal value after processing in the former stage. Simulation results show that our proposed channel has a lower computational complexity and better performance for channel estimation compared to the other works.
ABSTRACT II
摘要 IV
誌謝 V
CONTENTS VI
LIST OF FIGURES VII
LIST OF TABLES IX
Chapter 1 Introduction 1
1.1 Background 1
1.2 Related Works 3
Chapter 2 System and Channel Model 5
2.1 System Model 5
2.2 Channel Model 8
2.2.1 Beamforming 8
2.2.2 The Representation of Channel Model 10
2.2.3 The Transformation of Channel in Spatial Domain to Angular Domain 11
Chapter 3 Channel Estimation 13
3.1 Preliminaries: Compressed Sensing 13
3.2 The Existing Channel Estimation Method 16
3.3 Proposed Channel Estimation Scheme 19
3.3.1 The Formulation of Compressed Sensing Problem 19
3.3.2 Recovery 21
Chapter 4 Simulation Results 29
4.1 System Model and the Distribution of Samples 30
4.2 The Performance of Channel Estimation Analysis 36
Chapter 5 Conclusion 51
References 52
[1] R. W. Heath, Jr., N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 436–453, Apr. 2016.
[2] Z. Pi and F. Khan “An introduction to millimeter-wave mobile broadband systems ” IEEE Commun. Mag. vol. 49 no. 6 pp. 101–107, Jun. 2011.
[3] T. L. Mazetta and B. M. Hochwald, “Capacity of a mobile multiple antenna communication link in Rayleigh flat fading,” IEEE Trans. Inform. Theory, vol. 45, pp. 139–157, Jan. 1999.
[4] A. Abbaspour-Tamijani and K. Sarabandi, “An affordable millimeter-wave beam-steerable antenna using interleaved planar subarrays,” IEEE Trans. Antennas Propag., vol. 51, no. 9, pp. 2193–2202, Sep. 2003.
[5] A. Ali, N. Gonzlez-Prelcic, and R. W. Heath, “Millimeter wave beam selection using out-of-band spatial information,” IEEE Trans. Wireless Commun., vol. 17, pp. 1038–1052, Feb 2018.
[6] Zhenyu Xiao, Tong He, Pengfei Xia, and Xiang-Gen Xia, ‘‘Hierarchical Codebook Design for Beamforming Training in Millimeter-Wave Communication,’’ in 2016 IEEE Trans. on Wireless Communications, vol. 15, no. 5, pp. 3380-3392, May 2016.
[7] Alkhateeb, A., El Ayach, O., Leus, G., et al.: ‘Channel estimation and hybrid precoding for millimeter wave cellular systems’, J. Sel. Top. Signal Process., vol. 8, no. 5, pp. 831–846, 2014
[8] T. Bai and R. W. Heath Jr., “Coverage and rate analysis for millimeter-wave cellular networks,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 1100–1114, Feb. 2015.
[9] Herman, M., Strohmer, T.: ‘High-resolution radar via compressed sensing’, IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2275–2284, 2009
[10] E. Aguilera, M. Nannini, and A. Reigber, “A data adaptive compressed sensing approach to polarimetric SAR tomography,” in Proc. IEEE IGARSS, pp. 7472–7475, 2012
[11] Lustig, M., Donoho, D., Santos, J., and Pauly, J.: ‘Compressed sensing MRI’, IEEE Signal Process. Mag., vol. 25, no. 2, pp. 72–82, 2008
[12] Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., and Yi, M.: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227, 2009
[13] Kim S.-J., Koh K., Lustig M., Boyd S., Gorinevsky D.: ‘An interior point method for large-scale l1-regularized least squares’, IEEE J. Sel. Top. Signal Process., vol. 1, no. 4, pp. 606–617, 2007
[14] X. Rao and V. K. N. Lau, “Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems,” IEEE Trans. Signal Processing, vol. 62, no. 12, pp. 3261–3271, Jun. 2014.
[15] J. Yang, Z. Wei, X. Zhang, N. Li and L. Sang, “Enhanced Multi-Resolution Hierarchical Codebook Design for Adaptive Compressed Sensing Based Millimeter Wave Channel Estimation”, IEEE/CIC International Conference on Communications in China (ICCC), Jul. 2016.
[16] Dai, W., and Milenkovic, O.: ‘Subspace pursuit for compressive sensing signal reconstruction’, IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2230–2249, 2009
[17] E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm. Pure Appl. Math., vol. 59 no. 8, pp.1207-1223, Aug. 2006.
[18] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655–4666, Dec. 2007.
[19] D. Tse and P. Viswanath,” Fundamentals of Wireless Communication. Cambridge,” U.K.: Cambridge Univ. Press, 2005
[20] H. Zhang, S. Venkateswaran, and U. Madhow, ‘‘Channel modeling and MIMO capacity for outdoor millimeter wave links,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), pp. 1–6, Apr. 2010
[21] A. M. Sayeed and V. Raghavan, ‘‘Maximizing MIMO capacity in sparse multipath with reconfigurable antenna arrays,’’ IEEE J. Sel. Topics Signal Process., vol. 1, no. 1, pp. 156–166, Jun. 2007.
[22] El Ayach, O., Rajagopal, S., Abu-Surra, S., et al.: ‘Spatially sparse precoding in millimeter wave MIMO systems’, Trans. Wirel. Commun., vol. 13, no. 3, pp. 1499–1513, 2014
[23] N. Gonzalez-Prelcic, A. Ali, V. Va, and R. W. Heath, “Millimeter-wave communication with out-of-band information,” IEEE Commun. Mag., vol. 55, pp. 140–146, Dec. 2017.
[24] Qaisar, S., Bilal, R.M., Iqbal, W., Naureen, M., Lee, S.: ‘Compressive sensing: from theory to applications, a survey’, J. Commun. Netw., vol. 15, no. 5, pp. 443–456, 2013
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *