帳號:guest(3.149.230.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林裕倫
作者(外文):Lin, Yu-Lun
論文名稱(中文):運用隨機通道狀態在感知無線電網路中之會合方法
論文名稱(外文):Blind Rendezvous in Cognitive Radio Networks with Random Channel States
指導教授(中文):張正尚
指導教授(外文):Chang, Cheng-Shang
口試委員(中文):李端興
林華君
口試委員(外文):Lee, Duan-Shin
Lin, Hwa-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:105064521
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:39
中文關鍵詞:多通道會合方法優化排序近似演算法
外文關鍵詞:multichannel rendezvousmajorization orderingapproximation algorithms
相關次數:
  • 推薦推薦:0
  • 點閱點閱:476
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本論文中,我們考慮在感知無線電網路中的多通道交會問題,並且假設兩個使用者同時間跳到共同一個通道時會成功交會的機率會根據通道的狀態。我們用隨機程序去代表在任意時間下所有的通道狀態。對兩個使用者而言,他們只能夠知道通道狀態的分布狀況,並不能夠看到在任一時間下通道確切的狀態為何。

我們考慮兩個通道模型:(i)快速時變通道模型 (ii)慢速時變通道模型。在快速時變通道模型中,假設在不同的時間下,通道狀態是獨立地且相同地分布。在慢速時變通道模型中,假設通道狀態隨著時間保持不變。兩個使用者會依照每個通道的選擇機率在每個時間下隨機地選擇通道,透過這個交會方法,我們證明在快速時變模型中,能夠得到最小交會時間期望值所需的最佳通道選擇策略就是讓使用者在每個時間總是去選擇狀態最好的通道,這樣的交會方法又稱為單一通道選擇策略。

然而對慢速時變通道模型來說,要找到一個最佳的通道選擇策略是非常困難的事情。因此在假設所有通道狀態皆符合可交換性之下,我們透過優化排序推導出交會時間期望值的上下界。根據交會時間期望值的上下界,我們提出幾個近似演算法。最後透過許多的數值運算去驗證提出的近似演算法計算得到的結果確實能夠接近最佳解。
In this paper, we consider the multichannel rendezvous problem in cognitive radio networks (CRNs) where the probability that two users hopping on the same channel have a successful rendezvous is a function of channel states.
The channel states are modelled by stochastic processes with joint distributions known to users. However, the exact state of a channel at any time is not observable. We consider two channel models: (i) the fast time-varying channel model (where the channel states are assumed to be independent and identically distributed in each time slot), and (ii) the slow time-varying channel model (where the channel states remain unchanged over time).
Among the classes of the blind rendezvous policies that randomly hop on channels according to certain channel selection probabilities, we show the optimal channel selection policy that minimizes the expected time-to-rendezvous (ETTR) is the single selection policy that hops on the ``best'' channel all the time in the fast time-varying channel model. However, for the slow time-varying channel model, it is much more difficult to find the optimal channel selection policy. By using the majorization ordering, we derive a lower bound and an upper bound for the ETTR under the assumption that the channel states are exchangeable random variables.
Bases on these bounds, we then propose various approximation algorithms.The effectiveness of our approximation algorithms are further verified by extensive numerical experiments.
Contents 1
List of Figures 2
1 Introduction 3
2 System Model 7
3 The Fast Time-Varying Channel Model 9
4 The Slow Time-Varying Channel Model 11
4.1 A slow time-varying channel model with two channels 12
4.2 Change of probability vectors 18
4.3 Majorization ordering and bounds for the ETTR 20
4.4 Approximation solutions 23
5 Conclusion 37
[1] D.-S. L. C.-S. Chang and W. Liao, \A tutorial on multichannel rendezvous in cognitive radio networks," 2018.
[2] Q.-S. H. Z. Gu, Y. Wang and F. C. M. Lau, Rendezvous in Distributed Systems:
Theory, Algorithms and Applications. Springer, 2017.
[3] J.-M. P. K. Bian and R. Chane, \A quorum-based framework for establishing control channels in dynamic spectrum access networks," in ACM MobiCom'09, 2009.
[4] J. S. D. Yang and C. Kim, \Deterministic rendezvous scheme in multichannel access networks," in Electronics Letters, vol. 46, 2010.
[5] R. W. T. N. C. Theis and L. A. DaSilva, \Rendezvous for cognitive radios," in IEEE Transactions on Mobile Computing, 2011.
[6] X. C. Z. Lin, H. Liu and Y.-W. Leung, \Jump-stay based channel-hopping algo-
rithm with guaranteed rendezvous for cognitive radio networks," in Proc. IEEE INFOCOM, 2011.
[7] Y. W. Z. Gu, Q.-S. Hua and F. C. M. Lau, \Jnearly optimal asynchronous blind
rendezvous algorithm for cognitive radio networks," in Proc. IEEE SECON, 2013.
[8] G.-Y. Chang and J.-F. Huang, \A fast rendezvous channel-hopping algorithm for
cognitive radio networks," in IEEE Communications Letters, 2013.
[9] H.-Y. C. G.-Y. Chang, W.-H. Teng and J.-P. Sheu, \Novel channel-hopping schemes for cognitive radio networks," in IEEE Transactions on Mobile Computing, 2014.
[10] Q.-S. H. Z. Gu and W. Dai, \Fully distributed algorithm for blind rendezvous in
cognitive radio networks," in Proc. ACM MobiHoc, 2014.
[11] D.-S. L. C.-S. Chang, C.-Y. Chen and W. Liao, \E_cient encoding of user ids
for nearly optimal expected time-to-rendezvous in heterogeneous cognitive radio
networks," in IEEE/ACM Transactions on Networking, 2017.
[12] X. L. Q.-S. H. H.-S. Pu, Z.-Q. Gu and H. Jin, \Dynamic rendezvous algorithms for cognitive radio networks," in IEEE ICC, 2016.
[13] M. J. A.-R.-N. K. N. S. J. H. A. Al-Mqdashi, A. Sali and R. Nordin, \E_cient
rendezvous schemes for fastvarying cognitive radio ad hoc networks," in Transactions
on Emerging Telecommunications Technologies, vol. 28, 2017.
[14] A. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications. New York: Academic Press, 1979.
[15] S. M. Ross, \Stochastic processes," in John Wiley and Sons, 1996.
[16] IEEE, \Speci_c requirements - part 11: Wireless lan medium access control (mac) and physical layer (phy) speci_cations," in 802.11 IEEE Standard for Information technology, Telecommunications and information exchange between systems Local and metropolitan area networks, 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *