帳號:guest(18.119.135.32)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李盈進
作者(外文):Lee, Ying-Chin
論文名稱(中文):以新穎的矩陣分解之方法追蹤網路演進
論文名稱(外文):Novel Matrix Factorization Approaches for Tracking Network Evolution
指導教授(中文):張正尚
指導教授(外文):Chang, Cheng-Shang
口試委員(中文):李端興
林華君
口試委員(外文):Lee, Duan-Shin
Lin, Hwa-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:105064515
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:50
中文關鍵詞:網路嵌入時變網路連結預測非負矩陣分解
外文關鍵詞:Network embeddingTemporal networksLink predictionNonnegative matrix factorization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:664
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本論文中,我們考慮如何使用矩陣分解之方法來處理在時變網路中預測未來連結情形。傳統的嵌入方法會將每個時間點的網路各自嵌入成特徵矩陣,然而這會出現在不同時間點所嵌入而成的特徵不盡相同,如何對齊這些嵌入特徵就必須被考慮到。為了解決特徵對齊的問題,我們提出一個基於矩陣分解的方法稱之為點對時非負矩陣分解,使每一個點都各自嵌入到各自的嵌入空間。我們讓每一個點對應的點對時相似矩陣套用非負矩陣分解來獲得兩個特徵矩陣,我們假設其中一個特徵矩陣是靜態不變的,而另一個特徵矩陣是動態改變的。為了追蹤網路的演進,我們使用有限脈衝響應濾波器來達成,通過解脊回歸的問題,我們可以得到最佳的有限脈衝響應濾波器的參數來預測網路未來的情況。為了測試這些基於矩陣分解的方法的成效,我們利用人工生成的網路資料以及實際網路資料來進行實驗,實驗結果顯示點對時非負矩陣分解方法的準確率比其他基準方法來的高、經過嵌入之後損失較少的資訊以及需要比其他基於矩陣分解的方法還小的嵌入維度。
In this thesis, we consider the link prediction problem in temporal networks by matrix factorization based approaches. The traditional embedding methods embed each network individually, the meaning of the feature will vary with time. The issue of the alignment of embedding features might be considered. To address this issue, we propose a novel matrix factorization based approach, which is called Node-to-Time Nonnegative Matrix Factorization (NTNMF). It embeds each node into individual embedding space to prevent features from not be aligned. We apply the Nonnegative Matrix Factorization method on a node-to-time similarity matrix to obtain the latent feature matrices. We assume that one of the latent feature matrices is dynamic and the other is static. We then use the Finite Impulse Response (FIR) lter to track the evolution of the latent feature matrix. By solving a ridge regression problem, the best-estimated parameters of the FIR lter can be learned and used for predicting the latent features of the future. To evaluate the performance of the matrix factorization based approaches, we conduct our experiments on both synthetic datasets and real datasets. Our experimental results show that the matrix factorization based approaches are e ective. The NTNMF is better than baseline approaches, loses lower information of the similarity matrix, and requires the lower dimension of the latent feature vector than two other matrix factorization based
approaches.
Contents 1
List of Figures 3
1 Introduction 4
2 Problem Definition 8
3 System Models 10
3.1 Similarity Approach (Sim) . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Symmetric Nonnegative Matrix Factorization for Temporal Networks (SNMF) 11
3.3 Node-to-Time Nonnegative Matrix Factorization (NTNMF) . . . . . . . 13
3.3.1 Step 0: Preprocessing Node-to-Time Matrices . . . . . . . . . . . 13
3.3.2 Step 1: Embedding Node-to-Time Matrices . . . . . . . . . . . . . 14
3.3.3 Step 2: Tracking Evolution . . . . . . . . . . . . . . . . . . . . . . 15
3.3.4 Step 3: Predicting the Similarity Matrix . . . . . . . . . . . . . . 15
3.4 Temporal Symmetric Nonnegative Matrix Factorization (TSNMF) . . . . 17
4 Experimental Results 20
4.1 Link Prediction and Performance Metric . . . . . . . . . . . . . . . . . . 20
4.2 Experiments on Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Generating Synthetic Datasets . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Link Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.3 Latent Features of The NTNMF Approach . . . . . . . . . . . . . 26
4.3 Experiments on Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Link Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Conclusions 34
Appendices 37
A Temporal Deep Network Embedding (TDNE) 38
A.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.2 Deep Network Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.3 Tracking Network Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.4 Tricks for Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.5.1 Experiments on Synthetic Datasets . . . . . . . . . . . . . . . . . 43
A.5.2 Experiments on Real Datasets . . . . . . . . . . . . . . . . . . . . 43
A.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

[1] P. Chi, X. Wang, J. Pei, and W. Zhu, "A survey on Network Embedding", arXiv preprint arXiv:1711.08752v1, 2017.

[2] D. Wang, P. Chi, and W. Zhu, "Structural Deep Network Embedding", Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, p. 1225-1234, 2016.

[3] M. E. J. Newman, "Fast algorithm for detecting community structure in networks", Phys. Rev. E, vol. 69, no. 6, p. 066133, 2004.

[4] D. Liben-Nowell and J. Kleinberg, "The Link-Prediction Problem for Social Networks", J. American Society for Information Science and Technology, vol. 58, no. 7,
pp.1019-1031, 2007.

[5] T. Wu, C.-S. Chang, and W. Liao, "Tracking Network Evolution and Their Applications in Structural Network Analysis", IEEE Transactions on Network Science and Engineering, 2018.

[6] Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems", Computer, no. 8, pp.30-37, 2009.

[7] L. Yao, L. Wang, L. Pan, and K. Yao, "Link prediction based on common-neighbors for dynamic social network," Procedia Computer Science, vol. 83, pp. 82-89, 2016.

[8] M. W. Berry, M. Browne, A. N. Langville, V. Paul Pauca, and R. J. Plemmons, "Algorithms and applications for approximate nonnegative matrix factorization," Computational Statistics and Data Analysis, vol. 52, no. 1, pp. 155-173, 2007.

[9] D. Kuang, C. Ding, and H. Park, "Symmetric Nonnegative Matrix Factorization for Graph Clustering," Proceedings SIAM International Conference on Data Mining, pp. 106-117, 2012.

[10] Y.-Y. Lo, W. Liao, C.-S. Chang, and Y.-C. Lee, "Temporal Matrix Factorization for Tracking Concept Drift in Individual User Preferences," IEEE Transactions on Computational Social Systems, vol. 5, no. 1, pp. 156-168, 2018.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Machine Learning in Python," Journal of Machine Learning Research, vol. 12, pp.2825-2830, 2011.

[12] L. Isella, S. Juliette, A. Barrat, C. Cattuto, J. Pinton, and W. Van den Broeck, "What's in a crowd? analysis of face-to-face behavioral networks," J. Theoretical Biology, vol. 271, no. 1, pp. 166-180, 2011.

[13] N. Eagle and A. (Sandy) Pentland, "Reality mining: Sensing complex social systems," Personal Ubiquitous Comput., vol. 10, no. 4, pp. 255-268, Mar. 2006.

[14] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott, "Impact of human mobility on opportunistic forwarding algorithms," IEEE Trans. on Mobile Computing, vol. 6, no. 6, pp. 606-620, Jun. 2007
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *