帳號:guest(18.116.62.198)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阿明 賈利利
作者(外文):Jalili, Amin
論文名稱(中文):圖信號處理基礎研究
論文名稱(外文):Fundamental Studies in Graph Signal Processing
指導教授(中文):祁忠勇
指導教授(外文):Chi, Chong-Yung
口試委員(中文):吳仁銘
洪樂文
黃之浩
口試委員(外文):Wu, Jen-Ming
Hong, Yao-Win
Huang, Chih-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:105064423
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:58
中文關鍵詞:圖信號處理聯合平移算子聯合時間-頂點的平穩性
外文關鍵詞:Graph signal processingJoint translation operatorJoint time-vertex stationarity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:317
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
平穩性是經典信號處理(CSP)中用於對各種隨機信號進行建模和表徵以進行後續分析的基石。但是,在許多複雜的真實世界場景,其中隨機過程處於不規則的圖結構上,CSP在分析此類結構化數據時會拋棄基礎結構。建立新的框架用以分析高維圖隨機信號並考慮底層結構是至關重要的。為此,從運算子理論的角度來看,我們首先提出一個新的雙變量等距聯合平移算子(JTO),此算子與其他信號域中之算子有一致的抽象形式。此外,基於所提出的JTO,我們表徵時間-頂點濾波的概念。隨即,我們使用提出的等距JTO及其頻譜特徵,提出了時域中的聯合廣義平穩(JWSS)信號的新定義。然後提出一個新的聯合功率譜密度(JPSD)估算器,稱為廣義韋爾奇方法(GWM)。也提供仿真結果以驗証該JPSD估計器的有效性。為了展示這種建模的有效性,我們將目標專注於圖上時間序列的分類。然後,通過將腦電圖(EEG)信號建模為隨機時變圖信號,我們使用JPSD作為特徵以進行十分有挑戰性的情緒識別工作。實驗結果顯示,JPSD特徵與經典功率譜密度(PSD)和圖形PSD(GPSD)作為兩種應用的特徵集相比,在情緒識別上產生較高的準確性。
Stationarity is a cornerstone in classical signal processing (CSP) for modeling and characterizing various stochastic signals for the ensuing analysis. However, in many complex real world scenarios, where the stochastic process lies over an irregular graph structure, CSP discards the underlying structure in analyzing such structured data. Then it is essential to establish a new framework to analyze the high-dimensional graph structured stochastic signals by taking the underlying structure into account. To this end, looking through the lens of operator theory, we first propose a new bivariate isometric joint translation operator (JTO) consistent with the structural characteristic of translation operators in other signal domains. Moreover, we characterize time-vertex filtering based on the proposed JTO. Thereupon, we put forth a new definition of joint wide-sense stationary (JWSS) signals in time-vertex domain using the proposed isometric JTO together with its spectral characterization.
Then a new joint power spectral density (JPSD) estimator, called generalized Welch method (GWM), is presented. Simulation results are provided to show the efficacy of this JPSD estimator. To show the usefulness of JWSS modeling, we focus on the classification
of time-series on graph. To that end, by modeling the brain Electroencephalography (EEG) signals as JWSS processes, we use JPSD as the feature for the Emotion and Alzheimer’s disease (AD) recognition. Experimental results demonstrate that JPSD yields superior Emotion and AD recognition accuracy in comparison with the classical power spectral density (PSD) and graph PSD (GPSD) as the feature set for both applications. Eventually, we provide some concluding remarks.
1 Introduction 9
2 Mathematical Background 13
2.1 Vertex Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Discrete-Time Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Joint Time-Vertex Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . 17
3 Bivariate Transition Operator in Time-Vertex Domain 31
3.1 Graph Transition/Translation Operator . . . . . . . . . . . . . . . . . . . . 23
3.2 Isometric Bivariate Joint Transition Operator . . . . . . . . . . . . . . . . . 25
3.3 Joint Filtering via Joint Transition Operator . . . . . . . . . . . . . . . . . 30
4 Stationarity of Time-Series on Graph 35
4.1 Joint Wide-Sense Stationarity via Transition Invariance . . . . . . . . . . . 35
4.2 Separable JWSS Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Joint Power Spectral Density Estimation . . . . . . . . . . . . . . . . . . . . 40
4.4 Simulation and Experimental Results . . . . . . . . . . . . . . . . . . . . . . 43
5 Concluding Remarks 51
[1] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen, and O. Sporns, “Mapping the structural core of human cerebral cortex,” PLoS Biology, vol. 6, pp. 245 – 251, 2008.
[2] D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains,” IEEE Signal Process. Mag., vol. 30, pp. 83–98, May 2013.
[3] F. R. K. Chung, Spectral Graph Theory, vol. 92 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, 1997.
[4] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,” Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 129– 150, 2011.
[5] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,” IEEE Trans. Signal Processing, vol. 61, pp. 1644–1656, April 2013.
[6] M. Püschel and J. M. F. Moura, “Algebraic signal processing theory: Foundation and 1-d time,” IEEE Trans. Signal Processing, vol. 56, pp. 3572–3585, Aug. 2008.
[7] A. Sandryhaila and J. M. F. Moura, “Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure,” IEEE Signal Processing Magazine, vol. 31, pp. 80–90, Sep. 2014.
[8] D. I. Shuman, B. Ricaud, and P. Vandergheynst, “Vertex-frequency analysis on graphs,” Applied and Computational Harmonic Analysis, vol. 40, no. 2, pp. 260–291, 2016.
[9] N. Perraudin, B. Ricaud, D. I. Shuman, and P. Vandergheynst, “Global and local uncertainty principles for signals on graphs,” APSIPA Trans. Signal and Information Processing, vol. 7, e3, 2018.
[10] D. I. Shuman, M. J. Faraji, and P. Vandergheynst, “A multiscale pyramid transform for graph signals,” IEEE Trans. Signal Processing, vol. 64, pp. 2119–2134, April 2016.
[11] F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, “A time-vertex signal processing framework: Scalable processing and meaningful representations for time-series on graphs,” IEEE Trans. Signal Processing, vol. 66, no. 3, pp. 817–829, 2018.
[12] D. I. Shuman, C. Wiesmeyr, N. Holighaus, and P. Vandergheynst, “Spectrum-adapted tight graph wavelet and vertex-frequency frames,” IEEE Trans. Signal Processing, vol. 63, pp. 4223–4235, Aug 2015.
[13] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “The Spectral Graph Wavelet Transform: Fundamental Theory and Fast Computation,” in Vertex-Frequency Analysis of Graph Signals (E. S. Ljubisa Stanković, ed.), Signals and Communication Technology, pp. 141–175, Springer International Publishing, Dec. 2019.
[14] Y. Tanaka, “Spectral domain sampling of graph signals,” IEEE Trans. Signal Processing, vol. 66, pp. 3752–3767, July 2018.
[15] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal processing on graphs: Sampling theory,” IEEE Trans. Signal Processing, vol. 63, pp. 6510–6523, Dec 2015.
[16] N. Perraudin and P. Vandergheynst, “Stationary signal processing on graphs,” IEEE Trans. Signal Processing, vol. 65, pp. 3462–3477, July 2017.
[17] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph processes and spectral estimation,” IEEE Trans. Signal Processing, vol. 65, pp. 5911–5926, Nov. 2017.
[18] B. Girault, “Stationary graph signals using an isometric graph translation,” in 23rd European Signal Processing Conference (EUSIPCO), pp. 1516–1520, Aug. 2015.
[19] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geometric deep learning: Going beyond Euclidean data,” IEEE Signal Processing Magazine, vol. 34, pp. 18–42, July 2017.
[20] S. Chen, R. Varma, A. Singh, and J. Kovačević, “Signal recovery on graphs: Random versus experimentally designed sampling,” arXiv:1504.05427 [cs, math, stat], Apr. 2015.
[21] S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, “Reconstruction of graph signals through percolation from seeding nodes,” IEEE Transactions on Signal Processing, vol. 64, pp. 4363–4378, Aug 2016.
[22] X. Dong, Multi-View Signal Processing and Learning on Graphs. PhD thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 2014.
[23] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs from data: A signal representation perspective,” IEEE Signal Processing Magazine, vol. 36, no. 3, pp. 44–63, 2019.
[24] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning laplacian matrix in smooth graph signal representations,” IEEE Transactions on Signal Processing, vol. 64, no. 23, pp. 6160–6173, 2016.
[25] G. B. Giannakis, Y. Shen, and G. V. Karanikolas, “Topology identification and learning over graphs: Accounting for nonlinearities and dynamics,” Proceedings of the IEEE, vol. 106, pp. 787–807, May 2018.
[26] V. N. Ioannidis, Y. Shen, and G. B. Giannakis, “Semi-blind inference of topologies and dynamical processes over dynamic graphs,” IEEE Trans. Signal Processing, vol. 67, pp. 2263–2274, May 2019.
[27] E. Pavez, H. E. Egilmez, and A. Ortega, “Learning graphs with monotone topology properties and multiple connected components,” IEEE Trans. Signal Processing, vol. 66, pp. 2399–2413, May 2018.
[28] V. Kalofolias, “How to learn a graph from smooth signals,” in Proc. of the 19th International Conference on Artificial Intelligence and Statistics, vol. 51, (Cadiz, Spain), pp. 920–929, PMLR, 09–11 May 2016.
[29] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data under Laplacian and structural constraints,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, pp. 825–841, Sep. 2017.
[30] S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Network topology inference from spectral templates,” IEEE Trans. Signal and Information Processing over Networks, vol. 3, pp. 467–483, Sep. 2017.
[31] Y. Yankelevsky and M. Elad, “Finding gems: Multi-scale dictionaries for high-dimensional graph signals,” IEEE Trans. Signal Processing, vol. 67, pp. 1889–1901, April 2019.
[32] D. Thanou, D. I. Shuman, and P. Frossard, “Learning parametric dictionaries for signals on graphs,” IEEE Trans. Signal Processing, vol. 62, pp. 3849–3862, Aug 2014.
[33] K. Smith, B. Ricaud, N. Shahid, S. Rhodes, J. M. Starr, A. Ibanez, M. Parra, J. Escudero, and P. Vandergheynst, “Locating temporal functional dynamics of visual short-term memory binding using graph modular dirichlet energy,” Sci. Rep., vol. 7, Feb. 2017, Article No. 42013.
[34] M. Ménoret, N. Farrugia, B. Pasdeloup, and V. Gripon, “Evaluating graph signal processing for neuroimaging through classification and dimensionality reduction,” arXivpreprint:1703.01842, 2017.
[35] L. Goldsberry, W. Huang, N. F. Wymbs, S. T. Grafton, D. S. Bassett, and A. Ribeiro, “Brain signal analytics from graph signal processing perspective,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 851–855, Mar. 2017.
[36] W. Huang, L. Goldsberry, N. F. Wymbs, S. T. Grafton, D. S. Bassett, and A. Ribeiro, “Graph frequency analysis of brain signals,” vol. 10, no. 7, pp. 1189–1203, 2016.
[37] V. Miz, B. Ricaud, K. Benzi, and P. Vandergheynst, “Anomaly detection in the dynamics of web and social networks,” CoRR, vol. abs/1901.09688, 2019.
[38] H. E. Egilmez and A. Ortega, “Spectral anomaly detection using graph-based filtering for wireless sensor networks,” in Proc. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1085–1089, May 2014.
[39] Y. Park, C. E. Priebe, and A. Youssef, “Anomaly detection in time series of graphs using fusion of graph invariants,” IEEE Journal of Selected Topics in Signal Processing, vol. 7, pp. 67–75, Feb 2013.
[40] Q. Wei, Y. Ren, R. Hou, B. Shi, J. Y. Lo, and L. Carin, “Anomaly detection for medical images based on a one-class classification,” Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575, pp. 1–6, Feb. 2018.
[41] I. Jabłoński, “Graph signal processing in applications to sensor networks, smart grids, and smart cities,” IEEE Sensors Journal, vol. 17, pp. 7659–7666, Dec 2017.
[42] R. K. Jain, J. M. F. Moura, and C. E. Kontokosta, “Big data + big cities: Graph signals of urban air pollution,” IEEE Signal Processing Magazine, vol. 31, pp. 130–136, Sep. 2014.
[43] F. Mahmood, N. Shahid, P. Vandergheynst, and U. Skoglund, “Graph-based sinogram denoising for tomographic reconstructions,” in Proc. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3961–3664, Aug 2016.
[44] N. Perraudin, A. Loukas, F. Grassi, and P. Vandergheynst, “Towards stationary time-vertex signal processing,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3914–3918, March 2017.
[45] S. Segarra, S. P. Chepuri, A. G. Marques, and G. Leus, “Chapter 12 - Statistical Graph Signal Processing: Stationarity and spectral estimation,” in Cooperative and Graph Signal Processing (P. M. Djurić and C. Richard, eds.), pp. 325 – 347, Academic Press, 2018.
[46] E. Isufi, A. Loukas, N. Perraudin, and G. Leus, “Forecasting time series with VARMA recursions on graphs,” IEEE Trans. Signal Processing, vol. 67, pp. 4870–4885, Sep. 2019.
[47] W. Zheng, W. Liu, Y. Lu, B. Lu, and A. Cichocki, “Emotionmeter: A multimodal framework for recognizing human emotions,” IEEE Trans. Cybernetics, vol. 49, pp. 1110–1122, March 2019.
[48] J. Escudero, D. Abásolo, R. Hornero, P. Espino, and M. López, “Analysis of Electroencephalograms in Alzheimer’s disease patients with multiscale entropy,” Physiological Measurement, vol. 27, pp. 1091–1106, Sep. 2006.
[49] M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping,” NeuroImage, vol. 21, no. 1, pp. 99 – 111, 2004.
[50] N. J. Higham, Functions of Matrices: Theory and Computation. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2008.
[51] D. Spielman, Spectral and Algebraic Graph Theory. Oneline available as a draft version, http://cs-www.cs.yale.edu/homes/spielman/sagt/, 2019.
[52] T. Tao, “Chapter III.27 - Fourier Transform,” in The Princeton Companion to Mathematics, (T. Gowers, J. Barrow-Green, and I. Leader, eds.), Princeton University Press, 2008.
[53] A. V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing. Prentice Hall, 1989.
[54] M. Vetterli, J. Kovačević, and V. K. Goyal, Foundations of Signal Processing. Cambridge University Press, 2014.
[55] A. Loukas and D. Foucard, “Frequency analysis of time-varying graph signals,” in Proc. 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 346–350, Dec. 2016.
[56] B. Girault, P. Gonçalves, and É. Fleury, “Translation on graphs: An isometric shift operator,” IEEE Signal Processing Letters, vol. 22, pp. 2416–2420, Dec. 2015.
[57] A. Gavili and X. Zhang, “On the shift operator, graph frequency, and optimal filtering in graph signal processing,” IEEE Trans. Signal Processing, vol. 65, pp. 6303–6318, Dec. 2017.
[58] B. Girault, Signal Processing on Graphs - Contributions to an Emerging Field. PhD thesis, Ecole normale supérieure de lyon - ENS LYON, France, 2015.
[59] G. Coutinho, Quantum State Transfer in Graphs. PhD thesis, University of Waterloo, Ontario, Canada, 2014.
[60] P. Lancaster and M. Tismenetsky, The Theory of Matrices: With Applications. Academic Press, Computer Science and Scientific Computing Series, 2nd ed., 1985.
[61] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs: Frequency analysis,” IEEE Trans. Signal Processing, vol. 62, pp. 3042–3054, June 2014.
[62] A. Loukas and N. Perraudin, “Stationary time-vertex signal processing,” EURASIP Journal on Advances in Signal Processing, Nov. 2019.
[63] F. R. Bach and M. I. Jordan, “Learning graphical models for stationary time series,” IEEE Trans. Signal Processing, vol. 52, no. 8, pp. 2189–2199, 2004.
[64] R. A. Horn and C. R. Johnson, eds., Matrix Analysis. USA: Cambridge University Press, 1985.
[65] P. Djuric and C. Richard, Cooperative and Graph Signal Processing: Principles and Applications. Elsevier Science, 2018.
[66] L. Isserlis, “On certain probable errors and correlation coefficients of multiple frequency distributions with skew regression,” Biometrika, vol. 11, no. 3, pp. 185–190, 1916.
[67] B. Bollobás, Random Graphs. Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2 ed., 2001.
[68] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world networks,” Nature, vol. 393, pp. 440–442, June 1998.
[69] P. Zhong, D. Wang, and C. Miao, “EEG-based emotion recognition using regularized graph neural networks,” arXiv e-prints:1907.07835, vol. abs/1907.07835, Jul. 2019.
[70] L. Greenfield, J. Geyer, and P. Carney, Reading EEGs: A Practical Approach. LWW medical book collection, Lippincott Williams & Wilkins, 2009.
[71] S. J. Dimond, L. Farrington, and P. Johnson, “Differing emotional response from right and left hemispheres,” Nature, vol. 261, no. 5562, pp. 690–692, 1976.
[72] L. A. Schmidt and L. J. Trainor, “Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions,” Cognition and Emotion, vol. 15, no. 4, pp. 487–500, 2001.
[73] G. Zhao, Y. Zhang, and Y. Ge, “Frontal EEG asymmetry and middle line power difference in discrete emotions,” Frontiers in Behavioral Neuroscience, vol. 12, p. 225, 2018.
[74] E. Bullmore and O. Sporns, “The economy of brain network organization,” Nature reviews. Neuroscience, vol. 13, pp. 336–49, Apr. 2012.
[75] W. Zheng and B. Lu, “Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks,” IEEE Trans. Autonomous Mental Development, vol. 7, pp. 162–175, Sep. 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 藉由峰度最大化的盲蔽信號源分離演算法與其在無線通訊之應用
2. 藉由峰度最大化於類同步改良式多載波-分碼多工接取系統之盲蔽多用戶偵測
3. 藉由峰度最大化於傳送分集多載波-分碼多工接取系統之盲蔽空時解碼演算法
4. 使用峰度最大化於盲蔽訊號分離之多級通道限制演算法
5. 使用基於高階統計量之反濾波器準則於非同步多重速率之直接序列/分碼多工系統的空-時盲蔽等化
6. 在未知塊狀衰減通道中OSTBC-OFDM系統之最大勢然偵測
7. 應用於生醫訊號分析之確定性盲訊號抽取
8. 藉由峰度最大化於同步空時編碼-多載波-分碼多工接取系統之盲蔽空時解碼演算法
9. 在多路徑下使用峰度最大化之盲蔽波束成型演算法於正交分頻多工系統
10. 用於超寬頻多路徑通道中具有路徑安排策略之基於最大訊號雜訊比例之空時選擇性犁耙接收機
11. 盲蔽訊號源分離演算法之研究:比較、分析、與應用
12. 藉由子載波平均之半盲蔽通道估測演算法及其在多用戶正交分頻多工系統中波束成型與預先波束成型之應用
13. 基於凸分析之盲蔽非負訊號源分離於生物醫學與超光譜影像分析
14. 基於子載波平均及藉由峰度最大化之盲蔽波束成型於多用戶正交分頻多工系統
15. 使用峰度最大化於非同步多速率之直接序列/分碼多工存取系統的盲蔽多用戶檢測
 
* *