帳號:guest(18.119.138.48)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳子浤
作者(外文):Chen, Zih-Hong
論文名稱(中文):相容於互補式金氧半技術之通道可調變式近紅外光感測元件
論文名稱(外文):CMOS Compatible Band Adjustable Near Infrared Sensor
指導教授(中文):金雅琴
指導教授(外文):King, Ya-Chin
口試委員(中文):林崇榮
施教仁
口試委員(外文):Lin, Chrong-Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063703
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:56
中文關鍵詞:近紅外光感測器CMOS邏輯製程相容通道能障
外文關鍵詞:NIRCMOSEnergy Band
相關次數:
  • 推薦推薦:0
  • 點閱點閱:232
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於物聯網的興起,人們日常使用的產品對於電子IC的需求也隨之增加,在這產品演化的趨勢中,嵌入式相關產品的需求也開始日漸增加。其中,遷入式近紅外光感測器逐漸被應用於各領域;目前市面上近紅外光感測器多半需要特殊基材,與CMOS製成積體電路製程不相容,使得紅外光感應器(IR Sensor)普及性不高,本論文對此提出創新的遷入式近紅外光感測元件,希望未來能應用於整合式系統。
本論文提出一個具有對光感應有調變能力的矽基近紅外光感測元件,此近紅外光感測元件完全相容於奈米互補式金氧半導體邏輯製程,不需要額外的光罩或特殊製程步驟。此近紅外線感測器由一無閘極元件作為基礎,當光線觸及通道區時,會影響該區域之能障高度,造成讀取電流變化。利用無閘極通道上方不會影響光穿透的氧化層(Resist-Protection-Oxide, RPO)以及一氮化層(Contact-Etch-Stop-Layer, CESL)來做為電子儲存區域,而儲存的電子能導致通道區能障高度改變。藉由調變通道區的能障高度,此元件對於近紅外光的感光度也隨之改變;電性分析也顯示出此元件有優異的近紅外光靈敏度。此全新矽基近紅外光感測元件可望應用於各項嵌入式近紅外光感測系統。
Human needs for integrated infrared or near-infrared sensors have increased significantly over the past few years, with the rise of the Internet of Things. When all things are to be connected to the Internet, demands for integrated NIR sensor applications have become a new developmental trend. In this trend, integrated near-infrared sensors have also gained more attention over the years. However, currently, most of the near-infrared sensors are made on non-silicon-based substrate. This study proposed a brand-new solution of silicon-based integrated near-infrared sensors, giving conventional technology a direction in its advancement.
This novel fully silicon-based, near-infrared sensor has the ability to change its sensitivity to near-infrared illuminations while being fully compatible to nano-scale CMOS technology, with no extra masks or special process requirements. Such device is based on a gateless transistor. When light is illuminated on the gateless channel region, the incoming light will induce barrier lowering at the channel region, giving rise to subthreshold current. With a layer of resistive protective oxide (RPO) layer and a contact etch stop layer (CESL) above the channel region, the device gains the ability to modulated energy barrier height based on the charge stored inside the CESL layer. Through electrical analysis, this device reveals higher near-infrared sensitivity as barrier height is lowered. This novel CMOS compatible silicon-based barrier tunable near infrared sensor could become a promising solution of near-infrared sensors for embedded IC systems.
摘要 …………………………………………………………………………………………………i
Abstract…………………………………………………………………………………………………ii
致謝 …………………………………………………………………………………………………iii
內文目錄 …………………………………………………………………………………………………iv
附圖目錄 …………………………………………………………………………………………………vi
第一章 序論…………………………………………………………………………………………1
1.1 近紅外光感測元件簡介…………………………………………………1
1.2 研究動機………………………………………………………………………………2
1.3 論文大綱………………………………………………………………………………3
第二章 近紅外光感測器技術回顧……………………………………………4
2.1 近紅外光感測器之物理模型………………………………………4
2.2 近紅外光感測器之發展…………………………………………………5
2.2.1 NIR與近紅外光感測元件之發展………………………………5
2.2.2 非矽基材紅外光感測元件……………………………………………6
2.2.3 全矽基材紅外光感測元件……………………………………………7
2.3 小結………………………………………………………………………………………8
第三章 實驗設計與量測環境介紹…………………………………………17
3.1 近紅外光感測元件結構與相關理論………………………17
3.1.1 近紅外光感測元件結構………………………………………………17
3.1.2 通道熱電洞引發熱電子注入原理……………………………18
3.1.3 感光區能障與元件電流之關係…………………………………19
3.2 近紅外光感測元件相關參數與實驗設計………………20
3.2.1 暗電流與光電流………………………………………………………………20
3.2.2 光反應度……………………………………………………………………………21
3.2.3 感光區能障設計………………………………………………………………22
3.2.4 電子儲存效能……………………………………………………………………23
3.3 量測環境設計與架設………………………………………………………23
3.4 小結…………………………………………………………………………………………24
第四章 量測結果之討論與分析…………………………………………………32
4.1.1 電子注入點…………………………………………………………………………32
4.2 元件效能係數量測結果…………………………………………………33
4.2.1 暗電流……………………………………………………………………………………33
4.2.2 光電流近紅外光反應度…………………………………………………34
4.2.3 電子儲存效能……………………………………………………………………35
4.3 感光區能障高度與近紅外光感測能力之分析………35
4.4 小結…………………………………………………………………………………………36
第五章 總結…………………………………………………………………………………………51
參考文獻……………………………………………………………………………………………………53

[1] H. Iwai, "End of the Downsizing and World after That," ESSDERC, 2016, pp. 121-126.
[2] L. Kadura et al., "Extending the functionality of FDSOI N- and P-FETs to light sensing, " IEDM, 2016, pp. 32.6.1-32.6.4.
[3] V. Pusino et al., "InSb Photodiodes for Monolithic Active Focal Plane Arrays on GaAs Substrates," in IEEE TED, 2016, pp. 3135-3142.
[4] H. Inada, "Mid-infrared photodetectors with InAs/GaSb type-II quantum wells grown on InP substrate," 2013 International Conference on Indium Phosphide and Related Materials (IPRM), Kobe, 2013, pp. 1-2.
[5] E. G. Camargo et al., "High-Sensitivity Temperature Measurement With Miniaturized InSb Mid-IR Sensor," in IEEE Sensors Journal, vol. 7, no. 9, pp. 1335-1339, Sept. 2007.
[6] R. A. Chapman et al., "Monolithic HgCdTe charge transfer device infrared imaging arrays," in IEEE Transactions on Electron Devices, vol. 27, no. 1, pp. 134-145, Jan 1980.
[7] M. H. Kao et al., "Low temperature a-SiGe:H Near-IR sensor and photovoltaic devices for flexible multi-functional panel," CLEO: 2013, San Jose, CA, 2013, pp. 1-2.
[8] M. Casalino, et al., "Near-Infrared Sub-Bandgap All-Silicon Photodetectors: State of the Art and Perspectives" Sensors 2010.
[9] A. Samusenko et al., "Integrated silicon photodetector for lab-on-chip sensor platform," 2015 XVIII AISEM Annual Conference, Trento, 2015, pp. 1-4.
[10] H. Y. Fan, A. K. Ramdas, "Infrared Absorption and Photoconductivity in Irradiated Silicon", Journal of Applied Physics, 1959.
[11] C. Frederickson, et al., "Adding adaptive intelligence to sensor systems with MASS," IEEE SAS, 2017, pp. 1-6.
[12] L. Maidment, R. J. Clewes, M. D. Bowditch, C. R. Howle and D. T. Reid, "Infrared fingerprint-region aerosol spectroscopy," 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, 2017, pp. 1-1.
[13] S. Z. Li et al., "A near-infrared image based face recognition system," 7th International Conference on Automatic Face and Gesture Recognition (FGR06), Southampton, 2006, pp. 455-460.
[14] S. Freidank, M. Detert and S. Hirsch, "Multitouch touchless — A new approach with optical proximity sensing," 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), Vieste, 2017, pp. 145-149.
[15] T. Wang and C. Luo, "Fiber-optic semiconductor absorption temperature sensor for electrical power system applications," Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510), 2004, pp. 2375-2379 Vol.3.
[16] G. Li et al., "Infrared camera array system for air robot autolanding without GPS," 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, 2016, pp. 919-923.
[17] Y. Zou, S. Chakravarty, X. Xu, W. Lai and R. T. Chen, "Silicon chip based near-infrared and mid-infrared optical spectroscopy for volatile organic compound sensing," 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, San Jose, CA, 2014, pp. 1-2.
[18] D. Rossberg, "Optical Properties Of The Integrated Infrared Sensor," Solid-State Sensors and Actuators, 1995 and Eurosensors IX.. Transducers '95. The 8th International Conference on, Stockholm, Sweden, 1995, pp. 652-655.
[19] K. D. Stephan, "Radiometry before World War II: measuring infrared and millimeter-wave radiation 1800-1925," in IEEE Antennas and Propagation Magazine, vol. 47, no. 6, pp. 28-37, Dec. 2005.
[20] N. W. Ashcroft, N.D. Mermin, Solid State Physics; Holt, Rinehart and Winston: New York, NY, USA, 1976.
[21] G. Chiarotti, S. Nannarone, R. Pastore, P. Chiaradia, "Optical absorption of surface states in ultrahigh vaccum cleaved (111) surfaces of Ge and Si. Phys". Rev. B 1971, 4, 3398-3402.
[22] J. Chen, P. Osborn, A. Paton and P. Wall, "CCD near infrared temperature imaging in the steel industry," 1993 IEEE Instrumentation and Measurement Technology Conference, Irvine, CA, 1993, pp. 299-303.
[23] D. V. Rossi, A. N. Cheng, H. H. Wieder and E. R. Fossum, "A resistive-gate InAlAs/InGaAs/InP 2DEG CCD," 1992 International Technical Digest on Electron Devices Meeting, San Francisco, CA, USA, 1992, pp. 117-120.
[24] F. Arca, M. Sramek, S. F. Tedde, P. Lugli and O. Hayden, "Near-Infrared Organic Photodiodes," in IEEE Journal of Quantum Electronics, vol. 49, no. 12, pp. 1016-1025, Dec. 2013.
[25] M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, I. Rendina, "Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 m: Fabrication and characterization." Appl. Phys. Lett. 2008, 92, 251104.
[26] M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, L. Sirleto, "Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection." J. Lightw. Technol. 2010, 28, 3266-3272.
[27] H. Zhu, L. Zhou, X. Li and J. Chen, "All-silicon near-infrared phototransistor based on surface-state absorption," 2015 Opto-Electronics and Communications Conference (OECC), Shanghai, 2015, pp. 1-2.
[28] S. D. Tzeng, S. Gwo, "Charge Trapping Properties at Silicon Nitride/Silicon Oxide Interface Studied by Variable-Temperature Electrostatic Force Microscopy," Journal of Applied Physics, 2006
[29] F. R. L. Lin and C. C. H. Hsu, "New divided-source structure to eliminate instability of threshold voltage in p-channel flash memory using channel hot-hole-induced-hot-electron programming," 1999 International Symposium on VLSI Technology, Systems, and Applications. Proceedings of Technical Papers. (Cat. No.99TH8453), Taipei, 1999, pp. 203-206.
[30] A. Pelamatti, V. Goiffon, M. Estribeau, P. Cervantes and P. Magnan, . "Estimation and Modeling of the Full Well Capacity in Pinned Photodiode CMOS Image Sensors," in IEEE Electron Device Letters, vol. 34, no. 7, pp. 900-902, July 2013.
[31] T. A. Fjeldly and M. Shur, "Threshold voltage modeling and the subthreshold regime of operation of short-channel MOSFETs," in IEEE Transactions on Electron Devices, vol. 40, no. 1, pp. 137-145, Jan 1993.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *