|
[1] Luis Felipe Castillo, “El Transistor [Viva el Ingenio],” 2011. [2] S. E. Thompson, “Moore’s Law: the Future of Si Microelectronics,” Material today, vol. 9, pp. 20-25, 2006. [3] R. W. Keyes, T. J. Watson, “The Impact of Moore’s Law,” IEEE Solid-State Circuits Newsletter, vol. 3, pp. 25-27, 2006. [4] Kumar, Suhas, “Fundamental Limits to Moore's Law,” 2012. [5] J. P. Colinge, “Miltiple-gate SOI MOSFETs,” Solid-State Electron., vol. 48, no. 6, pp. 897-905, June. 2004. [6] M. Guillorn, et al, “FinFET Performance Advantage at 22nm: An AC perspective,” VLSI 2008, 2.1. [7] J. Hoyt, H. Nayfeh, S. Eguchi, “Strained Silicon MOSFET Technology,” International Electron Devices Meeting, pp.23-26, 2002. [8] D. T. Wang, “Real World Technologies,” International Electron Devices Meeting, 2005. [9] “Intel’s High-k/Metal Gate Announcement,” 2003 [10] Yang-Kyu Choi; N. Lindert; Peiqi Xuan; S. Tang; Daewon Ha; E. Anderson; Tsu-Jae King; J. Bokor; Chenming Hu, “Sub-20 nm CMOS FinFET technologies,” International Electron Devices Meeting, pp. 19.1.1-19.1.4, 2001. [11] Mark Bohr and Kaizad Mistry, “Intel’s Revolutionary 22 nm Transistor Technology,” 2011. [12] G. L. Deokar, H. Divecha, R. Molina, “FinFET Challenges and Solutions —Custom, Digital and Signoff,” 2013. [13] D. Hisamoto, W.C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.J. King, J. Bokor, C. Hu, IEEE “FinFET—A Self-Aligned Double-Gate MOSFET Scalable to 20 nm” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 12, 2000 [14] Gaurav Saini and Ashwani K. Rana, “Physical Scaling Limits of FinFET Structure: ASimulation Study,” in International Journal of VLSI Design & Communication Systems, vol. 2, pp. 26-35, 2011. [15] C. R. Manoj, A. B. Sachid, F. Yuan, “Impact of Fringe Capacitance on the Performance of Nanoscale FinFETs,” IEEE Electron Device Letters, vol.31, pp.83-85, 2010. [16] John L. Semmlow. “Circuits, signals, and systems for bioengineers,” Academic Press, pp.134-135, 2005. [17] J. Lin; Chien-Hwa Chang; S. Prasad; W. Loh, “An impedance-phase angle (Z-theta) method for capacitance extraction of ultra-thin gate dielectrics at intermediate frequency [MOS devices],” International Conference on Microelectronic Test Structures, pp.289-292, 2004. [18] Pathak Jay; A. D. Darji, “Analysis of the source/drain parasitic resistance and capacitance depending on geometry of FinFET,” Research in Microelectronics and Electronics, pp.298-301, 2015. [19] S. D. Kim, C. –M. Park, and J. C. S. Woo, “Advanced model and analysis of series resistance for CMOS scaling into nanometer regime-Part I: Theoretical derivation,” IEEE Trans. Electron Devices, vol. 49, pp. 457-466, Mar. 2002. [20] S. D. Kim, C. –M. Park, and J. C. S. Woo, “Advanced model and analysis of series resistance for CMOS scaling into nanometer regime-Part II: Quantitative analysis,” IEEE Trans. Electron Devices, vol. 49, pp. 467-472, Mar. 2002. [21] Xicheng Duan; Peng Lu; Weicong Li; Jason C. S. Woo, “Parasitic resistance modeling and optimization for 10nm-node FinFET,” 2018 18th International Workshop on Junction Technology (IWJT), pp. 1-4, 2018. [22] Edgar Solis Avila; Julio C. Tinoco; Andrea G. Martinez-Lopez; Mario Alfredo Reyes-Barranca; Antonio Cerdeira; Jean-Pierre Raskin, “Parasitic Gate Resistance Impact on Triple-Gate FinFET CMOS Inverter,” IEEE Transactions on Electron Devices, pp. 2635-2642, 2016. [23] Chiou-kou Tung, “Introduction to VLSI,” 2009. [24] Ülkühan Güler; Günhan Dündar, “Modeling CMOS Ring Oscillator Performance as a Randomness Source,” IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 712-724, 2014. [25] Lin, Che-Yu, “A Study of Hot Carrier Effects of N Channel FinFETs,” 2016. [26] Kunal Ghosh, Anagha Ghosh, et al., “Propagation Delay of CMOS inverter,”.
|