帳號:guest(18.226.34.143)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳辰地
作者(外文):Chen, Chen-Di
論文名稱(中文):表面結構對單晶矽太陽能電池特性之影響
論文名稱(外文):Effect of Surface Texture on Performance of Single Crystalline Silicon Solar Cell
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):陳建亨
岑尚仁
口試委員(外文):Chen, Jiann-Heng
Chen, Sun-Zen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063564
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:67
中文關鍵詞:表面結構太陽能電池
外文關鍵詞:Surface TextureSolar Cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:245
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
太陽能電池是一種吸收光並轉換成電流的元件,光進入元件中的比例越高,代表能產生的電流就越多,為了達成這個目的,能有效降低反射率的表面結構是不可或缺的要素。
在本論文中,我們使用噴砂與濕式蝕刻的方式在單晶矽上製作不同的表面結構,並在做完表面粗糙化之後藉由掃描式電子顯微鏡及反射率的量測來分析試片的表面結構以及表面反射率,之後再製作成太陽能電池並測量元件轉換效率。由掃描式電子顯微鏡的結果發現,經過噴砂處理的試片表面散佈著形狀不規則孔徑大小在1~5μm的孔洞,且噴砂角度60度的效果比30度的佳,而經過濕蝕刻的試片表面則是隨機分佈著寬1~5μm、高1~3μm的金字塔結構。反射率的量測結果顯示噴砂及濕蝕刻兩種方法都能有效降低表面反射率。測量元件的轉換效率所得到的結果為對照組的轉換效率在8~9%之間,濕蝕刻組的轉換效率在9~10%之間,與對照組相比有獲得提升,但噴砂組的轉換效率則是都在5%以下,與對照組相比反而是下降。經噴砂處理的元件效率不如預期高的可能原因有兩個:一、由於噴砂在試片表面留下的不規則形狀孔洞導致旋塗時,前驅物無法均勻分布在在試片表面上,因而造成熱處理時擴散的不均勻,使得形成元件之二極體接面深度不穩定,以及二、噴砂會在試片的表面留下鍵結缺陷,這些缺陷可能會在表面形成陷阱中心(trap center)或是在電極與半導體接面處形成介面陷阱(interface state trap),導致表面複合率提升而造成元件效率下降。
The solar cell is used to convert photo energy into current power. Increasing the amounts of absorbed photons may lead to forming more excitons that would yield high energy conversion efficiency. Hence, a surface texture with a superior photon adsorption rate is crucial to a solar cell to yield high efficiency.
In this thesis, sandblasting and wet etching are used to modify the surfaces of single crystalline silicon wafers, and then all samples are further fabricated into solar cells. After surface modification, the characteristics of the textured samples are analyzed by SEM observation and surface reflectance measurement. The energy conversion efficiency of the solar cell devices is obtained via Oriel class A and Keithley 2400. The SEM observation results show that the sandblast-textured surfaces are covered by irregular pit-holes with different sizes, while the wet etching-textured one are distributed with 1~5μm width and 1~3μm height pyramids. The results of reflectance measurement approve that both sandblasting and wet etching methods can effectively reduce the surface reflectance of the samples. The final device performances of the wet etching-textured ones yield 9~10% energy conversion efficiency, which is superior to that of controlled ones, i.e., 8~9%, as expected. However, that with sandblast-textured ones only show less 5% efficiency. The unexpected result may attribute to the generation of surface trap centers during the sandblaster process.
摘要 i
Abstract ii
目錄 iii
第1章 緒論 1
1.1 研究背景與動機 1
1.2 論文架構 6
第2章 相關理論基礎 7
2.1 太陽能電池簡介 7
2.2 太陽能電池的特性參數 9
2.2.1 短路電流 9
2.2.2 開路電壓 9
2.2.3 最大輸出功率 10
2.2.4 填充因子 10
2.2.5 能量轉換效率 10
2.2.6 量子效率 11
2.3 串聯電阻與並聯電阻 11
2.4 太陽能電池的效率 12
2.5 改善元件效率的方法 13
2.5.1 材料的選擇 13
2.5.2 吸收效率 13
2.5.3 減少反射 13
2.5.4 表面鈍化 15
2.6 大氣質量與標準光源 15
第3章 實驗 17
3.1 步驟與流程 17
3.2 表面粗糙化 19
3.2.1 噴砂 19
3.2.2 TMAH蝕刻 21
3.3 擴散 23
3.4 沉積電極 24
3.5 元件量測 25
3.5.1 太陽光模擬系統 25
3.5.2 二極體相關參數萃取 26
第4章 實驗結果 28
4.1 完成品元件照片 28
4.1.1 電極尺寸 28
4.1.2 試片編號規則 30
4.2 表面粗糙程度 30
4.3 反射率 33
4.4 外部量子效率 34
4.5 輸出特性 34
4.5.1 太陽光模擬系統 34
4.5.2 量測結果 35
4.5.3 輸出特性結果討論 59
第5章 結論 63
參考文獻 64
[1] “https://www.iea.org/statistics/electricity/”
[2] E. Becquerel, Compt. rend. 9, 561 (1893).
[3] R. Williams, “Becquerel Photovoltaic Effect in Binary Compounds,” The Journal of Chemical Physics, vol.32, pp. 1505-1514, 1960.
[4] C. Fritts, “On the Fritts selenium cell and batteries,” Van Nostrands Engineering Magazine 32, pp. 388–395, 1885.
[5] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power,” Applied Physics, vol.8, pp. 676, 1954.
[6] W. L. Bailey, Coleman, M. G., Harris, C. B., y Lesk, I. A., “United States Patent: 4137123 - Texture etching of silicon: method,” 1979.
[7] D. L. King and M. E. Buck, “Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells,” The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991, Las Vegas, NV, USA, vol.1, pp. 303-308, 1991.
[8] J. S. You, D. Kim, J. Y. Huh, H. J. Park, J. J. Pak, C. S. Kang, “Experiments on anisotropic etching of Si in TMAH,” Sol. Energy Mater. Sol. Cells, 66, pp. 37-44, 2001.
[9] P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells, 90, pp. 2319-2328, 2006.
[10] D. Z. Dimitrov, C.-H. Du, “Crystalline silicon solar cells with micro/nano texture,” Appl. Surf. Sci., 266, pp. 1-4, 2013.
[11] Stapf A., Honeit F., Gondek C., Kroke E., “Texturing of monocrystalline silicon wafers by HF-HCl-H2O2 mixtures: Generation of random inverted pyramids and simulation of light trapping in PERC solar cells,” Sol. Energy Mater. Sol. Cells, 159, pp. 112-120, 2017.
[12] H. Taniguchi, H. Sannomiya, K. Kajiwara, K. Nomoto, Y. Yamamoto, K. Hiyoshi, H. Kumada, M. Murakami, T. Tomita, “Amorphous silicon solar cell on textured tempered glass substrate prepared by sandblast process,” Sol. Energy Mater. Sol. Cells, 49, pp. 101-106, 1997.
[13] T. C. Wang, H .Y. Lee, C .T. Lee, Y. C. Cheng, H. W. Chen, “Investigated performance improvement of the micro-pressure sandblast-treated multi-crystalline Si wafer sliced using diamond wire sawing,” Sol. Energy, 161, pp. 220-225, 2018.
[14] 翁敏航等編著, “太陽能電池 : 原理、元件、材料、製程與檢測技術,” 台灣東華書局股份有限公司(2010).
[15] 黃惠良等編著, “太陽電池,” 五南圖書出版股份有限公司(2008).
[16] 張正華等編著, “有機與塑膠太陽能電池,” 五南圖書出版股份有限公司(2007).
[17] Martin A. Green著; 曹昭陽, 狄大衛, 李秀文譯, “太陽電池工作原理、技術與系統應用,” 五南圖書出版股份有限公司(2009).
[18] 林明獻編著, “太陽電池技術入門,” 全華圖書股份有限公司(2016).
[19] 謝嘉銘, “TMAH非等向性濕蝕刻特性之研究與應用,” 國立台灣大學機械工程學研究所碩士論文, 民國89年.
[20] O. Breitenstein, P. Altermatt, K. Ramspeck, A. Schenk, “The Origin of Ideality factors n > 2 of Shunts and Surfaces in the Dark I-V Curves of Si Solar Cells,” Proceedings of the 21st European Photovoltaic Solar Energy Conference (2006).
[21] S. H. Zaidi, D. S. Ruby, J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Transactions on Electron Devices, vol. 48, no. 6, pp. 1200-1206, 2001.
[22] G. Kumaravelu, M. M. Alkaisi, A. Bittar, D. Macdonald, J. Zhao, “Damage studies in dry etched textured silicon surfaces,” Current Applied Physics, Vol. 4, pp. 108-110, 2004.
[23] Jinsu Yoo, Gwonjong Yu, Junsin Yi, “Black surface structures for crystalline silicon solar cells,” Materials Science and Engineering: B, Vol. 159-160, pp. 333-337,2009.
[24] K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, J. Zhu, “Fabrication of Single‐Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles,” Adv. Funct. Mater., 16, pp. 387-394, 2006.
[25] W. K. Choi, T. H. Liew, M. K. Dawood, Henry I. Smith, C. V. Thompson, and M. H. Hong, “Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching,” Nano Letters, 8(11), pp. 3799-3802, 2008.
[26] Fatima Toor, Jihun Oh, Howard M. Branz, “Efficient nanostructured ‘black’ silicon solar cell by copper‐catalyzed metal‐assisted etching,” Prog. Photovolt: Res. Appl., 23, pp. 1375– 1380, 2015.
[27] Malcolm Abbott, Jeffrey Cotter, “Optical and electrical properties of laser texturing for high‐efficiency solar cells,” Prog. Photovolt: Res. Appl., 14, pp. 225-235, 2006.
[28] Barada K. Nayak, Vikram V. Iyengar, Mool C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast‐laser‐induced self‐assembled micro and nano structures,” Prog. Photovolt: Res. Appl., 19, pp. 631-639, 2011.
[29] F. Toor, H. M. Branz, M. R. Page, K. M. Jones, H. C. Yuan, “Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells,” Appl. Phys. Lett., 99, 103501, 2011.
[30] Jing Yang, Fangfang Luo, Tsung Sheng Kao, Xiong Li, Ghim Wei Ho, Jinghua Teng, Xiangang Luo, Minghui Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light: Science & Applications, vol. 3, pp. e185, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *