帳號:guest(3.145.178.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉美鵬
作者(外文):Liu, Mei-Peng
論文名稱(中文):溶液製程有機發光二極體電洞注入層特性之研究
論文名稱(外文):Research on the hole injection layer characteristic of solution-processed organic light-emitting diodes
指導教授(中文):洪勝富
指導教授(外文):Horng, Sheng-Fu
口試委員(中文):孟心飛
趙宇強
口試委員(外文):Meng, Hsin-Fei
Chao, Yu-Chiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063556
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:89
中文關鍵詞:有機發光二極體溶液製程電洞注入層
外文關鍵詞:organic light-emitting diodesolution-processedhole injection layer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:446
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
溶液製程有機發光二極體元件雖然具低成本、易大面積化等優點,但其在電性與穩定度方面仍不及真空蒸鍍的元件。溶液製程OLED目前多使用PEDOT:PSS作為電洞注入層材料,但PEDOT:PSS會酸蝕ITO基板,造成元件穩定度下降,因此若想要提升元件電性與穩定度,必須先針對電洞注入層做改良或替換。
本論文以此為出發點,主要是以刮刀塗佈技術在小面積綠磷光元件上嘗試不同的電洞注入層,並分析探討其特性優劣與原因;包含材料的溶解性、熱處理條件、膜面完整性對元件電性的影響。 本論文將研究討論的主軸分為兩部分,第一部分為以磷鉬酸(phosphomolybdic acid, PMA)作為電洞注入層,試圖在材料上尋求突破;另一部分為藉由摻雜其他材料改善原材料的不足,在PEDOT:PSS中添加PFI以增加電洞注入能力,在PMA中混合高分子抑制其聚集,藉此改善溶解度問題並提升膜面品質,這部分以PMA混和PEDOT:PSS有最佳效果,和PEDOT:PSS相比,發光效率提升了1.5 cd/A左右,從起始亮度1000 cd/m2到500 cd/m2的操作壽命更提升了4倍。
Although solution-processed organic light-emitting diode has the advantages of low cost, large area, etc, it is still not an opponent of the vacuum-evaporated device in terms of electrical properties and stability. Solution-processed OLEDs currently use PEDOT:PSS as a hole injection layer material. However, PEDOT:PSS will etch the ITO substrate and lead a bad influence on the stability of the device. Therefore, if we want to improve the property and stability of components, we must first improve or replace the hole injection layer. In this thesis, different hole injection layers were tried on small-area green phosphorescent organic light-emitting diodes by the blade coating, and the reasons of their electrical properties were analyzed, including the solubility of the material, thermal treatment conditions, the integrity of the thin film. The main axis of this thesis is divided into two parts. The first part is to use PMA as a new hole injection layer, trying to make a breakthrough in the material. The other part is to improve the weak points of raw material by adding other materials to it. Mixing PEDOT:PSS with PFI can increase the hole injection ability. Mixing polymer with PMA can suppress molecular aggregation, improve the solubility problem, and improve the thin film quality. In this part, the best result is blending PMA and PEDOT:PSS. Compared with PEDOT:PSS, the current efficiency increased by 1.5 cd/A, and the operating lifetime is even 4 times better from the initial brightness of 1000 cd/m2 to 500 cd/m2.
摘要 i
Abstract ii
致謝 iii
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1前言 1
1.2有機發光二極體歷史與發展 2
1.3研究動機與方向 3
1.4文獻回顧 4
1.4.1 刮刀塗佈技術製備高分子有機發光二極體元件 4
1.4.2 影響有機發光二極體元件效能之因子 6
1.4.3 以雜多酸為電洞注入層製備高穩定度之有機發光二極體元件 6
1.4.4 以斜坡式(gradient)電洞注入層改善高分子有機發光二極體元件特性 7
1.4章節架構 8
第二章 有機發光二極體操作原理與結構 9
2.1元件結構 9
2.2發光原理 11
2.3主客發光體能量轉移機制 12
2.4磷光與螢光發光機制 15
2.5元件電性定義 16
2.5.1 發光效率 17
2.5.2 元件壽命 18
第三章 實驗流程與材料介紹 19
3.1元件製作流程 19
3.1.1 ITO基板蝕刻 19
3.1.2 塗佈有機薄膜 23
3.1.3 元件蒸鍍及封裝 27
3.1.4 電性量測 29
3.2實驗材料介紹 31
3.2.1電洞注入材料 31
3.2.2電洞傳輸材料 33
3.2.3主客體發光材料 35
3.2.4電子傳輸材料 36
3.2.5 其他高分子材料 36
第四章、實驗設計與結果討論 37
4.1 以PFI摻雜PEDOT:PSS取代PEDOT:PSS 37
4.2.1 PFI與PEDOT:PSS之摻雜比例測試 38
4.2 以PMA取代PEDOT:PSS 45
4.2.1不同溶劑對元件特性的影響 45
4.2.2 PMA溶於乙腈之濃度測試 52
4.2.3 PMA溶於乙腈之烘烤溫度測試 58
4.3 以高分子混合PMA取代PEDOT:PSS 63
4.3.1 Polystyrene (PS)混合phosphomolybdic acid (PMA) 63
4.3.2 PEDOT:PSS混合phosphomolybdic acid (PMA) 68
4.3.2.1 PEDOT:PSS與PMA之混合配方測試 68
4.3.2.2 PMA與PEDOT:PSS之混合比例測試 74
4.3.2.3 PMA混合PEDOT:PSS之烘烤時間測試 80
第五章、總結與未來展望 85
第七章 參考文獻 88
[1] M. Pope, H. P. Kallmann, and P. Magnante, J.Chem.Phys. 38, 2042 (1963).
[2] W. Helfrichj and W. G. Schneider, Phys.Rev.Lett. 14, 229 (1965).
[3] C. W. Tang, S. A. VanSlyke, and C. H. Chen, Appl. Phy. 65, 3610 (1989).
[4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H.
friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990).
[5] T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, Appl. Phys.
Lett. 75, 1679 (1999).
[6] M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, Appl. Phys. Lett. 77, 2255
(2000).
[7] L. Duan, L. Hou, T-W Lee, J. Qiao, D. Zhang, G. Dong, L. Wang and Y. Qiu, J. Mater. Chem. 20, 6392 (2010).
[8] S. R. Tseng, H. F. Meng, K. C. Lee, and S. F. Horng, Appl. Phys. Lett. 93, 153308 (2008).
[9] Y. F. Chang , H. F. Meng , G. L. Fan , K. T. Wong ,H. W. Zan , H. W. Lin, H. L.Huang , S. F. Horng , Org. Electron. 29, 99 (2016).
[10] C. Y. Chen, H. W. Chang, Y. F. Chang, B. J. Chang, Y. S. Lin, P. S. Jian, H. C. Yeh, H. T. Chien, E. C. Chen, Y. C. Chao, H. F. Meng, H. W. Zan, H. W. Lin, S. F. Horng, Y. J. Cheng, F. W. Yen, I. F. Lin, H. Y. Yang, K. J. Huang, and M. R. Tseng, Appl. Phys. 110, 094501 (2011).
[11] S. Ohisa, S. Kagami, Y. J. Pu, T. Chiba, and J. Kido, ACS Appl. Mater. 8, 20946 (2016).
[12] J. X. Tang, Y. Q. Li, L. R. Zheng, and L. S. Hung, Appl. Phys. 95, 4397(2004).
[13] J. S. Kim, R. H. Friend, and F. Cacialli, Appl. Phys. Lett. 74, 3084(1999).
[14] T. W. Lee, O. Kwon, M. G. Kim, S. H. Park, J. Chung, S. Y. Kim, Y. Chung,J. Y. Park, E. Han, D. H. Huh, J. J. Park, and L. Pu, Appl. Phys. Lett. 87, 231106 (2005).
[15] Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, Appl. Phys. 77,
694(1995).
[16] H. Yan, P. Lee, N. R. Armstrong, A. Graham, G. A. Evmenenko,P. Dutta, and T. J. Marks, J. AM. CHEM. SOC. 127, 3172(2005).
[17] T. W. Lee, Y. Chung, O. Kwon, and J. J. Park, Adv. Funct. Mater. 17, 390 (2007).
[18] C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn,Appl. Phys. Lett. 70, 1348 (1997).
[19] M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, Adv. Funct. Mater, 11, 116(2001).
[20] L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds , Adv. Mater. 12, 481(2000).
[21] H. Shi , C. Liu , Q. Jiang , and J. Xu , Adv. Electron. Mater. 1, 1500017(2015).
[22] W. H. Kim, A. J. Mäkinen, N. Nikolov, R. Shashidhar, H. Kim, and Z. H. Kafafi , Appl. Phys. Lett. 80, 3844 (2002).
[23] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl.
Phys. Lett. 75, 4 (1999).
[24] L.S. Hung, C.H. Chen, Mater. Sci. Eng. R 39, 143 (2002).
[25] 陳金鑫,黃孝文,OLED夢幻顯示器-OLED材料與元件,五南書局,台北,2007
[26] S. Hofle, M. Pfaff , H. Do , C. Bernhard , D. Gerthsen ,U. Lemmer , A. Colsmann, Org. Electron. 15, 337 (2014).
[27] A. Benor, S. Y. Takizawa, C. P. Bolivar, P. Anzenbacher, Jr. , Org. Electron. 11, 938 (2010).
[28] C. Tengstedt , A. Kanciurzewska , M. P. d. Jong , S. Braun , W. R. Salaneck , M. Fahlman , Thin Solid Films 515, 2085 (2006).
[29] Y. Zhu, Z. Yuan, W. Cui, Z. W. Wu, Q. Sun, S. Wang, Z. Kang and B. Sun, J. Mater. Chem. A2, 1436 (2014).
[30] X. Jia, L. Shen, M. Yao, Y. Liu, W. Yu, W. Guo, and S. Ruan, Appl. Mater. 7, 5367 (2015).
[31] D. E. Katsoulis , Chem. Rev. 98, 359 (1998).
[32] G. Ji, Y. Wang, Q. Luo, K. Han, M. Xie, L. Zhang, N. Wu, J. Lin, S. Xiao, Y. Q. Li, L. Q. Luo, and C. Q. Ma, Appl. Mater. 10 (1), 943 (2018).
[33] D. Alemu, H. Y. Wei, K. C. Hod andC. W. Chu, Energy Environ. Sci. 5, 9662(2012).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *