帳號:guest(18.223.170.103)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪玉庭
作者(外文):Hung, Yu-Ting
論文名稱(中文):應用鰭式場效電晶體邏輯製程之 雙位元電阻式隨機選取記憶體
論文名稱(外文):A Novel Twin Bit Resistive Random Access Memory in FinFET CMOS Logic Technology
指導教授(中文):金雅琴
指導教授(外文):King, Ya-Chin
口試委員(中文):林崇榮
蔡銘進
口試委員(外文):Lin, Chrong-Jung
Tsai, Ming-Jinn
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063544
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:57
中文關鍵詞:鰭式場效電晶體電阻式隨機存取記憶體非揮發性記憶體
外文關鍵詞:FinFETRRAMNon-volatile memory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:410
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著科技日益更新,各式各樣的消費性電子產品也推陳出新,像是手機、平板電腦等攜帶式裝置亦或者是電子手環、智慧型手錶等穿戴式裝置的出現都促使了現今電子產品往小體積大儲存容量方向發展。非揮發性記憶體可以依照是否能夠改寫大致分為唯讀記憶體 ( ROM ) 、單次寫入記憶體 ( OTP ) 、快閃式記憶體 ( Flash Memory ) 以及電子抹除式可複寫唯讀記憶體 ( EEPROM ) 等幾大類型。非揮發性記憶體應用範圍廣泛,例如智慧型手機、數位相機、汽車系統、悠遊卡、信用卡與識別證的晶片感應器上。雖然快閃式記憶體身為目前非揮發性記憶體之主流,卻因製程上的微縮面臨著物理極限,應著此趨勢,許多新型非揮發性記憶體之研究如雨後春筍般冒出,其中電阻式隨機存取記憶體為目前為最被看好之下一代新型記憶體之一。
本論文以16奈米製程實現一雙位元鰭式場效電晶體介電層電阻式隨機存取記憶體 ( Twin Bit FinFET Dielectric Resistive Random Access Memory , TB FIND RRAM ),此種新型記憶體於製程上不需要額外光罩,使之能相容於先進鰭式場效電晶體邏輯製程中。藉由直流掃描 ( DC sweep ) 與交流脈衝 ( AC pulse ) 分析,此新型元件操作電壓差異較大,可避免過度設置。另外,其操作速度快,雙位元之間狀態呈現高度一致性;並且可承受一萬次之設置與重置週期測試、於200oC高溫下保持優良的資料保存性,最後,在經歷連續讀取以及設置干擾等分析過後皆表現出高度可靠性。綜合上述,本論文所提出之應用於鰭式場效電晶體邏輯製程之雙位元電阻式隨機選取記憶體極有可能成為新一代主流非揮發性記憶體之候選者之一。
Nowadays, consumer electronics develop rapidly, such as cellphone and tablet or smart watch. Since the appearance of those portable devices and wearable devices become much more popular, the demand raise for data storage medium which is compact and provide high volume. Although flash Memory is the mainstream nonvolatile memory these days, as technology node keep scaling down , conventional flash memory faces challenges of its physics limits. Therefore, many research groups have been working on developing new-type NVM. Among them, the RRAM is one of the most promising solutions.
This study proposed a new device implemented in 16nm technology, called Twin Bit FinFET Dielectric Resistive Random Access Memory ( TB FIND RRAM ). It is fully compatible with FinFET CMOS logic process. By DC and AC measurement, we find that this new devices has a large enough operation window and short switching time. Besides that, it also shows that the cell is symmetric, where the resistive states of the left and right bits almost identical. In the AC pulses test, it can bear 10k set/reset cycles with good stability. The data saved in TB FIND RRAM remains stable even it is baking in the 200oC for 500 hours. Moreover, excellent read disturb and set disturb immunity are also shown in this new devices, proving its superior reliability.
摘要 i
Abstract ii
致謝 iii
內文目錄 iv
附圖目錄 vi
附表目錄 viii
第一章 序論 1
1.1 前言 1
1.1.1 磁阻式隨機存取記憶體 2
1.1.2 相變化記憶體 2
1.1.3 電阻式隨機存取記憶體 3
1.2 論文大綱 3
第二章 電阻式隨機存取記憶體相關文獻回顧 8
2.1 電阻式隨機存取記憶體基本概念 8
2.1.1電阻式隨機存取記憶體文獻回顧 8
2.1.2電阻式隨機存取記憶體模型介紹 9
2.1.3電阻式隨機存取記憶體基本操作 10
2.2 電阻式隨機存取記憶體陣列 12
2.2.1互補式電阻式記憶體陣列 12
2.2.2二極體驅動交叉點陣列與選擇器驅動陣列 13
2.2.3金屬─氧化物─半導體電晶體驅動陣列 13
2.3 小結 14
第三章 FinFET電阻式隨機存取記憶體 27
3.1 元件結構 27
3.2 量測環境介紹 29
3.3 元件特性 29
3.3.1直流電性分析 29
3.3.2 交流脈衝電性分析 30
3.4 小結 30
第四章 雙位元電阻式隨機選取記憶體陣列 41
4.1 陣列結構的比較 41
4.2 耐久度分析與逐步增加脈衝法 42
4.3 陣列可靠度量測與分析 43
4.3.1 資料保存性分析 43
4.3.2 連續讀取干擾分析 43
4.3.3 設置干擾分析 44
4.4 小結 44
第五章 總結 53
參考文獻 54

[1] SLONCZEWSKI, John C. Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 1996, 159.1-2: L1-L7.
[2] LIN, C. J., et al. 45nm low power CMOS logic compatible embedded STT MRAM utilizing a reverse-connection 1T/1MTJ cell. In: Electron Devices Meeting (IEDM), 2009 IEEE International. IEEE, 2009. p. 1-4.
[3] BHEDA, Rishiraj A., et al. Energy efficient phase change memory based main memory for future high performance systems. In: Green Computing Conference and Workshops (IGCC), 2011 International. IEEE, 2011. p. 1-8.
[4] SIMPSON, R. E., et al. Interfacial phase-change memory. Nature Nanotechnology, 2011, 6.8: 501.
[5] LIN, Chih-Yang, et al. Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices. Surface and Coatings Technology, 2008, 203.5-7: 628-631.
[6] PARK, In-Sung, et al. Resistance switching characteristics for nonvolatile memory operation of binary metal oxides. Japanese Journal of Applied Physics, 2007, 46.4S: 2172.
[7] JEONG, Doo Seok; SCHROEDER, Herbert; WASER, Rainer. Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/ Pt stack. Electrochemical and Solid-State Letters, 2007, 10.8: G51-G53.
[8] Low-voltage and fast-speed forming process of tungsten oxide resistive memory. In: International Conference on Solid State Devices and Materials. Japan, 2008. p. 1168-1169.
[9] HICKMOTT, T. W. Low‐frequency negative resistance in thin anodic oxide films. Journal of Applied Physics, 1962, 33.9: 2669-2682.
[10] 李明道. 新式非揮發性記憶體之發展與挑戰. 國家奈米元件實驗室奈米通訊, 2014, 21.3: 9-14.
[11] PRAKASH, Amit; JANA, Debanjan; MAIKAP, Siddheswar. TaO x-based resistive switching memories: prospective and challenges. Nanoscale Research Letters, 2013, 8.1: 418.
[12] KIM, D. C., et al. Electrical observations of filamentary conductions for the resistive memory switching in NiO films. Applied Physics Letters, 2006, 88.20: 202102.
[13] IELMINI, D.; NARDI, F.; CAGLI, C. Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories. Nanotechnology, 2011, 22.25: 254022.
[14] PARK, Jubong, et al. Multibit Operation of TiOx -Based ReRAM by Schottky Barrier Height Engineering. IEEE Electron Device Letters, 2011, 32.4: 476-478.
[15] CHEN, Yang Yin, et al. Endurance/Retention Trade-off on HfO2/Metal Cap 1T1R Bipolar RRAM. IEEE Transactions on Electron Devices, 2013, 60.3: 1114-1121.
[16] LIN, Chih-Yang, et al. Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices. IEEE Electron Device Letters, 2007, 28.5: 366-368.
[17] LIN, Chih-Yang, et al. Bistable resistive switching in Al2O3 memory thin films. Journal of The Electrochemical Society, 2007, 154.9: G189-G192.
[18] WU, Yi, et al. Low-power TiN/Al2O3/Pt resistive switching device with sub-20 μA switching current and gradual resistance modulation. Journal of Applied Physics, 2011, 110.9: 094104.
[19] SHIH, Andy, et al. Highly stable resistive switching on monocrystalline ZnO. Nanotechnology, 2010, 21.12: 125201.
[20] CHIU, Fu-Chien; LI, Peng-Wei; CHANG, Wen-Yuan. Reliability characteristics and conduction mechanisms in resistive switching memory devices using ZnO thin films. Nanoscale Research Letters, 2012, 7.1: 178.
[21] YAO, Jun, et al. Intrinsic resistive switching and memory effects in silicon oxide. Applied Physics A, 2011, 102.4: 835-839.
[22] RUSSO, Ugo, et al. Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Transactions on Electron Devices, 2009, 56.2: 193-200.
[23] GAO, Bin, et al. Unified physical model of bipolar oxide-based resistive switching memory. IEEE Electron Device Letters, 2009, 30.12: 1326-1328.
[24] FENG, P. A. N., et al. Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Progress in Natural Science: Materials International, 2010, 20: 1-15.
[25] HSIEH, Chun-I., et al. Forming-free resistive switching of TiOx layers with oxygen injection treatments. In: VLSI Technology, Systems and Applications (VLSI-TSA), 2011 International Symposium on. IEEE, 2011. p. 1-2.
[26] LINN, Eike, et al. Complementary resistive switches for passive nanocrossbar memories. Nature materials, 2010, 9.5: 403.
[27] SHIN, Jungho, et al. TiO 2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application. Journal of Applied Physics, 2011, 109.3: 033712.
[28] TSENG, Yuan Heng, et al. A new high-density and ultrasmall-cell-size contact RRAM (CR-RAM) with fully CMOS-logic-compatible technology and circuits. IEEE Transactions on Electron Devices, 2011, 58.1: 53-58.
[29] CHEN, Yu-Sheng, et al. Impact of compliance current overshoot on high resistance state, memory performance, and device yield of HfO x based resistive memory and its solution. In: VLSI technology, systems and applications (VLSI-TSA), 2011 international symposium on. IEEE, 2011. p. 1-2.
[30] LINN, Eike, et al. Complementary resistive switches for passive nanocrossbar memories. Nature Materials, 2010, 9.5: 403.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *