帳號:guest(3.15.3.41)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭佳晏
作者(外文):Hsiao, Chia-Yen
論文名稱(中文):高頻調變氮化物藍光發光二極體之研製與分析
論文名稱(外文):Fabrication and Analysis of GaN-Based High-Speed Blue Light-Emitting Diodes
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):陳隆建
吳家慶
蔡宗良
口試委員(外文):Chen, Lung-Chien
Wu, Chia-Ching
Tsai, Tsung-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063542
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:103
中文關鍵詞:高速載子生命時間時間單光子計數系統倒置封裝發光二極體微型發光二極體ABC model
外文關鍵詞:High-speedcarrier lifetimeTRPLFlip-chipmicro LED array (mLEDA)ABC model
相關次數:
  • 推薦推薦:0
  • 點閱點閱:165
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,發光二極體因為具有高效、低功耗等優點,因此將研究發導向展於照明以及背光應用上,不過,發光二極體相對於傳統光源則具有另一個優勢–高頻調變特性。因應不同市場需求,研發具有1GHz調變頻寬、功率可達1mW以上的高頻調變的發光二極體,並進一步導入可見光通訊、植物生長照明與塑膠光纖通訊等潛力應用的領域。
本篇論文主要研究為波段落在藍光( 450 nm )發光二極體的頻寬調變之特性探討,分析元件尺寸、量子井數目以及藉由覆晶,進而比較單一形式與陣列形式結構對發光二極體直流特性、調變頻寬之影響。建構發光二極體的小訊號電路模型,並萃取發光二極體的小訊號參數,發現當發光二極體尺寸縮小至微米等級後,寄生效應中的寄生電容與電阻並不會影響調變頻寬。透過此萃取方式,更可以驗證尺寸微米等級的發光二極體其調變頻寬主要由載子生命週期決定,因此如何降低載子生命週期為高頻調變發光二極體的重點。
針對不同量子井數目製成的發光二極體,透過速率方程式推導出發光二極體的轉移方程式,利用其中ABC model探討其物理機制,可以得知一個量子井相較於多個量子井的發光二極體有較高的載子密度,以致於較低的載子生命週期,然而在調變頻寬上,一個量子井也會比多個量子井的發光二極更大幅提升。另外,調整量子井與量子阻障層的厚度,然而在相對的厚度下,也可以使調變頻寬有效的增加。當元件尺寸縮小,小尺寸元件需要相對較高的電流密度來達到高頻寬的調變,而且有量測上不易的問題,因此利用覆晶,除了能維持相同的光強度且不會損失調變頻寬之外,相對於單一形式覆晶的發光二極體,陣列形式覆晶的發光二極體能提升光強度與增加元件調變頻寬。
研發出在注入電流 50 mA的情況下,主動區尺寸直徑為 50 μm的藍光發光二極體可達到 468 MHz及 3.67mW;,利用覆晶技術(Flip-Chip Bonding)裝定於測試板上,研發出在注入電流 50 mA 的情況下,主動區尺寸直徑為 10 μm的藍光發光二極體可達到 1089 MHz及 1.03 mW,此外,元件於 50 mA驅動電流下操作頻寬可達 1089 MHz,然因串聯電阻導致對應極大之元件壓降(≥ 5 V)。
In recently, light – emitting diode have the high efficiency and the low power consumption so that it can be used to some application in display.
Light – emitting diode have another best characteristic that is high – frequency. To the demand in the different market, we fabricate the high – speed light- emitting diodes which have 1 GHz and 1mW power. It can be applied to the visible light communication (VLC), plant grow light (PGL) and plastic optical fiber(POF).
In the thesis, we conduct the bandwidth modulation of blue light – emitting diodes, and its emission peak is 450nm.The effect of the device size , quantum well numbers and the different fabrications are discussed, including DC characteristic, bandwidth modulation, etc. Develop a small signal equivalent circuit model to determine the modulation response and recombination lifetime. We find the bandwidth modulation is not limit by parasitic RC and only determined by recombination lifetime. It is most important how to lower carrier lifetime to achieve higher modulation bandwidth.
Based on the rate equation, we can discuss the physics with the ABC model in the different quantum well numbers. By this methods, we can know single quantum well has the higher carrier density leading to lower the carrier lifetime, and hence the modulation bandwidth of single quantum well is higher than multiple quantum well. In contrast, increasing the thickness of the quantum well and quantum barrier also can reach the same effect. Moreover, the small area high – speed light – emitting diode should be operated at higher current density to get the high bandwidth. We not only can solve the difficult measurement but also can keep the same light output power, and it will not decrease the bandwidth by the flip chip bonding in the small device size. Additionally, the micro LED array can have the effects in the same way.
Developed a blue light emitting diode with a 50-μm-diameter active region that can reach 500 MHz and 3.67 mW in the injection current of 50 mA. Blue light-emitting diode in a 10 μm diameter can achieve 1089 MHz and 1.03 mW at an injection current of 50 mA by flip chip bonding. In addition, the device operates at 50 mA can achieve up to 371 MHz. Because of the voltage drop enough (≥ 5 V) due to the series resistance.
摘要 i
Abstract iii
誌謝 v
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xiv
Chapter 1 Introduction 1
1.2. motivation 2
1.3. organization work 2
Chapter 2 Characterization of Parasitic(RC), Recombination lifetime, and Modulation Bandwidth on High-speed LEDs 6
2.1.1. Equivalent Circuit Model and Parasitic Parameters Extraction 7
2.1.2. Carrier Recombination Lifetime Determination and Bandwidth 9
2.2. Rate Equation Analysis 12
2.2.1. Coupled Carrier and Photon Rate Equation for LEDs 12
2.2.3. Time-resolved photoluminescence (TRPL) and carrier recombination lifetime for LEDs. 17
Chapter 3 Design of High-Speed LEDs 21
3.1. Preface 21
3.2. Device Fabrication and Experiment Set-up 22
3.2.1. The epitaxial of the device 22
3.2.2. Device Fabrication 22
3.2.3. Experiment set-up 27
Chapter 4 Characteristic of the High-Speed Light Emitting LEDs 36
4.1. Preface 36
4.2. The Effect of Quantum Well Numbers on Modulation Bandwidth and Minority Carrier Lifetime 37
4.2.1. DC Characteristics 37
4.2.2. Optic Characteristics 39
4.2.3 Minority carrier lifetime Characteristics 41
4.2.4 Carrier lifetime Characteristics of TRPL 45
4.3. The Effect of the width of Quantum Well/Barrier on Modulation Bandwidth and Minority Carrier Lifetime 54
4.3.1. DC Characteristics 54
4.2.2. Optic Characteristics 56
4.2.3 Minority carrier lifetime Characteristics 58
4.2.4 Carrier lifetime Characteristics of TRPL 59
4.4. Summary of Design on High-Speed LEDs 70
Chapter 5 Design, Fabrication and Characteristics of Micro-LEDs for Visible Light Communication 78
5-1Preface 78
5-2 Layer Structure Design and Device Fabrication 79
5-2-1 The Processes Flow of the LEDs 79
5-2-2 The Processes Flow of the submount 84
5-3 The Effect of Device Size on Modulation Bandwidth 86
5-3-1 DC Characteristic 87
5-3-2 Optic Characteristic 88
5-3-3 Remark 97
Chapter 6 Conclusions and Future Work 98
References 101

[1] https://web.njit.edu/~abdallah/VLC/index.html
[2] http://tektrender.com/avoid-effects-rf-interference-electronics/
[3] https://cmfenews.com/visible-light-communication-market/
[4] http://www.ioffe.ru/SVA/NSM/Auger/model.html
[5] https://ecee.colorado.edu/~bart/book/book/chapter2/ch2_8.htm#fig2_8_2
[6] E. F. Schubert, “Light-Emitting Diodes” (Cambridge Univ Pess),
www.LightEmittingDiodes.org.
[7] R. H. Horng, and Y. W. Kuo, “Process development of GaN light emitting diodes with imbedded contacts,” Proc. of SPIE Vol. 8484 848406-1, 2012.
[8] J. Day, J. Li, D. Y. C. Lie, C. Bradford, J. Y. Lin and H. X. Jiang, “Full-scale self-emissive blue and green microdisplays based on GaN micro-LED arrays,” Proc. of SPIE, vol. 8268, 82681X, 2012.
[9] J. E. Clayton, “Very high pin count flip chip assembly using conductive polymer adhesives,” Boston, MA. IMAPS 2003.
[10] Ken Gilleo, Area Array Packaging Handbook: Manufacturing and Assembly, 1st ed, McGraw-Hill Professional, 2001, chapter 18.
[11] S. Cihangir, S. Kwan, “Characterization of indium and solder bump bonding for pixel detectors,” Nuclear Instruments and Methods in Physics Research A 476 (2002) 670–675.
[12] M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” IEEE APPLIED PHYSICS LETTERS 112, 191102 (2018).
[13] Juri Vinogradov, Roman Kruglov, Rainer Engelbrecht, Olaf Ziemann, Jinn-Kong Sheu,Kai-Lun Chi, Jhih-Min Wun,and Jin-Wei Shi, “GaN-Based Cyan Light Emitting Diode with up to 1-GHz Bandwidth for High-Speed Transmission Over SI-POF,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 9 NO. 3, June 2017.
[14] A. Rashidi, M. Nami, M. Monavarian, A. Aragon, K. DaVico, F. Ayoub, S. Mishkat-Ul-Masabih, A. Rishinaramangalam, and D. Feezell, “Differential carrier lifetime and transport effects in electrically injected III-nitride light emitting diodes,” IEEE JOURNAL OF APPLIED PHYSICS 122, 035706 (2017)
[15] Aurelien David, Christophe A. Hurni, Nathan G. Young, and Michael D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling “ IEEE JOURNAL OF QUANTUM ELECTRONICS LETTERS 109, 083501 (2016).
[16] Jin-Wei Shi, Senior Member, IEEE, Kai-Lun Chi, Jhih-Min Wun, John E. Bowers, “III-Nitride based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication “IEEE ELECTRON DEVICE LETTERS, VOL. 37, NO. 7, JULY 2016.
[17] Sujan Rajbhandari, Member, IEEE, Hyunchae Chun, Grahame Faulkner, Scott Watson, Anthony E. Kelly, Erdan Gu, Richard V. Penty, Ian H. White, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications “IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 28, NO. 19, OCTOBER 2016.
[18] Chun-Han Lin, Charng-Gan Tu, Yu-Feng Yao, Sheng-Hung Chen, Chia-Ying Su, Hao-Tsung Chen, Yean-Woei Kiang, and Chih-Chung (C. C.) Yang, “High modulation bandwidth of a light-emitting diode with surface plasm on coupling “ IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 10, OCTOBER 2016.
[19] Qiang Li, Shuai Wang, Zhi-Na Gong, Feng Yun, Ye Zhang, Wen Ding, “Time-resolved photoluminescence studies of InGaN / GaNmulti-quantum-wells blue and green light-emitting diodes at room temperature “ JOURNAL FOR LIGHT AND ELECTRON OPTICS,OPTIK, VOL. 1809-1813, 127, November 2016
[20] Yu-Feng Yin, Wen-Yi Lan, Yen-Hsiang Hsu, Yuan-Fu Hsu, Chao-Hsin Wu, and JianJang Huang, “High-speed modulation from the fast mode extraction of a photonic crystal light emitting diode “ JOURNAL OF APPLIED PHYSICS 119, 013103 (2016).
[21] J. Z. Liu, D. B. Charlton, C. H. Lin, K. Y. Lee, C. Krishnan, and M. C. Wu, “Efficiency improvement of blue LEDs using a GaN burried air void photonic crystal with high air filling fraction,“ IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 50, NO. 5, MAY 2014.
[22] P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” JOURNAL OF APPLIED PHYSICS 115, 033112 (2014).
[23] Giovanni Verzellesi, Davide Saguatti, Matteo Meneghini, Francesco Bertazzi, Michele Goano, Gaudenzio Meneghesso, and Enrico Zanoni, “Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies,” IEEE JOURNAL OF APPLIED PHYSICS 114, 071101 (2013)
[24] Richard P. Green, Jonathan J. D. McKendry, David Massoubre, Erdan Gu, Martin D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes “IEEE JOURNAL OF APPLIED PHYSICS LETTERS 102, 091103 (2013).
[25] Chien-Lan Liao, Yung-Fu Chang, Chong-Lung Ho, and Meng-Chyi Wu, “High-Speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer “IEEE ELECTRON DEVICE LETTERS, VOL. 34, NO. 5, MAY 2013.
[26] H. F. Liu, W. Liu, A. M. Yong, X. H. Zhang, S. J. Chua, and D. Z. Chi, “Effects of annealing on structural and optical properties of InGaN/GaN multiple quantum wells at emission wavelength of 490 nm “ IEEE JOURNAL OF APPLIED PHYSICS 110, 063505 (2011)
[27] Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN lightemitting diodes,” JOURNAL OF APPLIED PHYSICS 107, 013103 (2010).
[28] Y. Li, R. W. Johnson, P. Thompson, T. Hooghan and J. Libres, Auburn University, Texas Instruments, “Reliability of flip chip packages with high thermal conductivity heat spreader attach,” 978-1-4244-2231-9/08/$25.00 ©2008 IEEE.
[29] Basavanhally, N. Lucent Technol., Murray Lopez D. , Aksyuk V. , Ramsey D. , Bower E. , Cirelli R. , Ferry E. , Frahm R. , Gates J. , Klemens F. , Lai W. , Low Y. , Mansfield W. , C. S. Pai, Papazian R. , Pardo F. , Sorsch T. , Watson Pat, “High-Density Solder Bump Interconnect for MEMS Hybrid Integration,” IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 30, NO. 4, NOVEMBER 2007.
[30] S. J. Chang, C. S. Chang, Y. K. Su, Senior Member, IEEE, C. T. Lee, Senior Member, IEEE, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei, and H. M. Lo, “Nitride-based flip-Chip ITO LEDs,” IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 28, NO. 2, MAY 2005.
[31] C. W. Jeon, H. W. Choi, E. Gu, and M. D. Dawson, Senior Member, IEEE, ”High-density matrix-addressable AlInGaN-based 368-nm microarray light-emitting diodes,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 16, NO. 11, NOVEMBER 2004.
[32] Y. C. Lin, S. J. Chang a,*, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, C. W. Kuo , S. C. Chen, “InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts,” Solid-State Electronics 47 (2003) 849–853.
[33] Petr G. Eliseev,a) Marek Osin’ski, and Hua Li, “ Recombination balance in green-light-emitting GaN/InGaN/AlGaN quantum wells “APPLIED PHYSICS LETTERS VOLUME 75, NUMBER 24, DECEMBER 1999
[34] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku, Jpn. J. Appl. Phys., vol. 36, pp. 1059-1061 (1997).
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *