|
[1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Phys. Rev., vol. 74, pp. 230–231, Jul 1948. [2] http://www.cedmagic.com/history/transistor-1947.html. [3] http://www.astrosurf.com/luxorion/qsl-ham-history10.htm. [4] G. E. Moore, “Cramming more components onto integrated circuits, reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.,” IEEE Solid-State Circuits Society Newsletter, vol. 11, pp. 33–35, sep 2006. [5] http://www.monolithic3d.com/blog/archives/07-2013. [6] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, and M. Buehler, “A 45nm logic technology with high-k metal gate transistors, strained silicon, 9 cu interconnect layers, 193nm dry patterning, and 100% pbfree packaging,” in 2007 IEEE International Electron Devices Meeting, IEEE, dec 2007. [7]https://slideplayer.com/slide/2645842/9/images/39/Drain+Induced+Barrier+Lowering+contE28099d.jpg. [8] https://kknews.cc/news/j9yjn6.html. [9] C. Hu, J. Bokor, T.-J. King, E. Anderson, C. Kuo, K. Asano, H. Takeuchi,J. Kedzierski, W.-C. Lee, and D. Hisamoto, “FinFET-a self-aligned doublegate MOSFET scalable to 20 nm,” IEEE Transactions on Electron Devices, vol. 47, no. 12, pp. 2320–2325, 2000. [10] https:// www.semiwiki.com/ forum/ content/ 1908-finfet-modeling-extraction-16-nm.html. [11] K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, vol. 146, no. 9, pp. 351 – 355, 2008. [12] L. Solymar and D. Walsh, Electrical Properties of Materials. Oxford University Press, 2004. [13] J. Bardeen, “Surface states and rectification at a metal semi-conductor contact,” Phys. Rev., vol. 71, pp. 717–727, May 1947. [14] H. Hasegawa and T. Sawada, “On the electrical properties of compound semiconductor interfaces in metal/insulator/ semiconductor structures and the possible origin of interface states,” Thin Solid Films, vol. 103, no. 1, pp. 119 – 140, 1983. [15] V. Heine, “Theory of surface states,” Phys. Rev., vol. 138, pp. A1689–A1696, Jun 1965. [16] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin, S. Park, and W. J. Yoo, “Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides,” ACS Nano, vol. 11, pp. 1588–1596, Feb. 2017. [17] J. Wang, Q. Yao, C.-W. Huang, X. Zou, L. Liao, S. Chen, Z. Fan, K. Zhang, W. Wu, X. Xiao, C. Jiang, and W.-W. Wu, “High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer,” Advanced Materials, vol. 28, pp. 8302–8308, jul 2016. [18] J.-R. Chen, P. M. Odenthal, A. G. Swartz, G. C. Floyd, H. Wen, K. Y. Luo, and R. K. Kawakami, “Control of schottky barriers in single layer MoS2 transistors with ferromagnetic contacts,” Nano Lett., vol. 13, pp. 3106–3110, July 2013. [19] H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett., vol. 14, pp. 3594–3601, June 2014. [20] Y. Liu, P. Stradins, and S.-H. Wei, “Van der waals metal-semiconductor junction: Weak fermi level pinning enables effective tuning of schottky barrier,” Science Advances, vol. 2, p. e1600069, apr 2016. [21] R. Islam, G. Shine, and K. C. Saraswat, “Schottky barrier height reduction for holes by fermi level depinning using metal/nickel oxide/silicon contacts,” Applied Physics Letters, vol. 105, p. 182103, nov 2014. [22] A. Castellanos-Gomez, “Black phosphorus: Narrow gap, wide applications,” J. Phys. Chem. Lett., vol. 6, pp. 4280–4291, Nov. 2015. [23] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect -transistors,” Nature Nanotechnology, vol. 9, p. 372, Mar. 2014. [24] S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Özyilmaz,“Electric field effect in ultrathin black phosphorus,” Applied Physics Letters,vol. 104, p. 103106, mar 2014. [25] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature Chemistry, vol. 5, p. 263, Mar. 2013. [26] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2:A new direct-gap semiconductor,” Phys. Rev. Lett., vol. 105, p. 136805, Sep 2010. [27] D. J. Late, B. Liu, J. Luo, A. Yan, H. S. S. R. Matte, M. Grayson, C. N. R. Rao, and V. P. Dravid, “GaS and GaSe ultrathin layer transistors,” Advanced Materials, vol. 24, pp. 3549–3554, jun 2012. [28] P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett., vol. 13, pp. 1649–1654, Apr. 2013. [29] P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors,” ACS Nano, vol. 6, pp. 5988–5994, July 2012. [30] Masato Ishikawa and Takashi Nakayama, “Theoretical investigation of geometry and electronic structure of layered In2Se3,” Japanese Journal of Applied Physics, vol. 36, no. 12A, p. L1576, 1997. [31] J. O. Island, S. I. Blanter, M. Buscema, H. S. J. van der Zant, and A. Castellanos-Gomez, “Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors,” Nano Lett., vol. 15, pp. 7853–7858, Dec. 2015. [32] Z. Yang, W. Jie, C.-H. Mak, S. Lin, H. Lin, X. Yang, F. Yan, S. P. Lau, and J. Hao, “Wafer-scale synthesis of high-quality semiconducting twodimensional layered InSe with broadband photoresponse,” ACS Nano, vol. 11, pp. 4225–4236, Apr. 2017. [33] S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano, vol. 8, pp. 1263–1272, Feb. 2014. [34] Q. Zhou, Q. Chen, Y. Tong, and J. Wang, “Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection,” Angewandte Chemie International Edition, vol. 55, pp. 11437–11441, aug 2016. [35] P.-H. Ho, Y.-R. Chang, Y.-C. Chu, M.-K. Li, C.-A. Tsai, W.-H. Wang, C.-H. Ho, C.-W. Chen, and P.-W. Chiu, “High-mobility InSe transistors: The role of surface oxides,” ACS Nano, vol. 11, pp. 7362–7370, July 2017. [36] D. A. Bandurin, A. V. Tyurnina, G. L. Yu, A. Mishchenko, V. Zólyomi, S. V. Morozov, R. K. Kumar, R. V. Gorbachev, Z. R. Kudrynskyi, S. Pezzini, Z. D. Kovalyuk, U. Zeitler, K. S. Novoselov, A. Patanè, L. Eaves, I. V. Grigorieva, V. I. Fal’ko, A. K. Geim, and Y. Cao, “High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe,” Nature Nanotechnology, vol. 12, p. 223, Nov. 2016. [37] M. Li, C.-Y. Lin, S.-H. Yang, Y.-M. Chang, J.-K. Chang, F.-S. Yang, C. Zhong, W.-B. Jian, C.-H. Lien, C.-H. Ho, H.-J. Liu, R. Huang, W. Li, Y.-F. Lin, and J. Chu, “High mobilities in layered InSe transistors with indiumencapsulation-induced surface charge doping,” Advanced Materials, vol. 30,p. 1803690, sep 2018. [38] C. Carlone, S. Jandl, and H. R. Shanks, “Optical phonons and crystalline symmetry of InSe,” physica status solidi (b), vol. 103, pp. 123–130, jan 1981. [39] G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi, and A. I. Dmitriev, “Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement,”Advanced Materials, vol. 25, pp. 5714–5718, aug 2013. [40] L. Dobrescu, M. Petrov, D. Dobrescu, and C. Ravariu, “Threshold voltage extraction methods for mos transistors,” in 2000 International Semiconductor Conference. 23rd Edition. CAS 2000 Proceedings (Cat. No.00TH8486), vol. 1, pp. 371–374 vol.1, 10-1. [41] W. Feng, X. Zhou, W. Q. Tian, W. Zheng, and P. Hu, “Performance improvement of multilayer InSe transistors with optimized metal contacts,” Physical Chemistry Chemical Physics, vol. 17, no. 5, pp. 3653–3658, 2015. [42] D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid, and C. N. R. Rao, “Hysteresis in single-layer MoS2 field effect transistors,” ACS Nano, vol. 6, pp. 5635–5641, June 2012. [43] S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim,J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer mos2 crystals,” Nature Communications, vol. 3, p. 1011, Aug. 2012. [44] Z. Wu, Z. Luo, Y. Shen, W. Zhao, W. Wang, H. Nan, X. Guo, L. Sun, X. Wang, Y. You, and Z. Ni, “Defects as a factor limiting carrier mobility in WSe2: A spectroscopic investigation,” Nano Research, vol. 9, pp. 3622–3631, sep 2016. [45] D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2d-0d MoS2-PbS quantum dot photodetectors,” Advanced Materials, vol. 27, pp. 176–180, nov 2014.
|