帳號:guest(18.220.188.4)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂孟奕
作者(外文):Lu, Meng-I
論文名稱(中文):硒化銦場效電晶體電性分析
論文名稱(外文):Transport Characteristics of InSe Field-Effect-Transistors
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):闕郁倫
李奎毅
口試委員(外文):Chueh, Yu-Lun
Lee, Kuei-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063539
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:69
中文關鍵詞:硒化銦場效電晶體表面氧化
外文關鍵詞:Indium SelenideField-effect-transistorSurface oxidation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:617
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在現今半導體矽製程不斷進行尺寸微縮的發展下,會遭遇到短通道效應等諸多問題。二維材料被認為是有機會取代矽成為新一代半導體材料的候選人。不同於二維材料中的研究熱門過渡金屬二硫族化合物(Transition metal dichalcogenide, TMDCs),硒化銦(InSe)屬於三六族層狀半導體的一員,InSe擁有較小的有效電子質量以及廣而可調變的直接能隙範圍,因此被視為是非常有潛力的一個半導體材料。

類似於黑磷的化學不穩定性造成InSe非常容易受到大氣中的水氧氧化 影響元件表現。本論文中利用90 torr的純氧環境對InSe做表面保護處理,發現經過6小時的氧化處理的元件,其特性比起經過大氣水氧氧化的元件有了大幅度的提升(遷移率從18.52 cm^2/V.s 提升到362 cm^2/V.s)。接著再利用電流遲滯大小與電流-時間關係量測來確認InSe氧化層的品質。另外經過比較發現電子束微影製程會對材料造成損傷,因此使用銅網當作金屬遮罩來製作元件能夠避免高能電子束的影響。

最後我們將PbS量子點旋塗在InSe元件表面,希望能看到光致電荷轉移的現象,然而由於逐層沉積配位基交換過程使用的化學藥品會損害到材料,因此沒有看到如預期的電流增大效果。
In the presence of short channel effect along with device scaling down, the use of 2D materials may be a possible solution. Indium selenide(InSe), which belongs to III-VI group layered semiconductors, is a promising material with small electron effective mass and large tunable bandgap.

Instability like black phosphorus making InSe devices easy to be affected by water and O_2 molecules. In this thesis, surface treatment by 90 torr, pure oxygen environment was made to form a protective oxide layer. By comparing transport characteristics of devices with different oxidation time, we find that 6-hours-oxidation device had the best performance. Next, we measured current hysterysis and I-T curves of devices to confirm different oxide quality. Furthermore, we find that using e-beam lithography to scale down channel length may largely degrade device performance.

Finally, in order to improve device performance by photo-assisted charge transfer, we deposited PbS quantum dot on InSe devices. The result showed that chemicals used in ligand exchange process will damage InSe channel, therefore the improvement of transport characteristics can not be seen.
論文摘要.................................. I
Abstract.................................... II
目錄.......................................... III
第一章序論............................... 1
1.1 半導體技術演進 . . . . . . . 1
1.2 矽製程的微縮與侷限 . . . . 2
1.3 金屬半導體接觸特性. . . . . 6
1.4 論文結構 . . . . . . . . . . . . . 8
第二章二維材料介紹................. 9
2.1 二維材料的發展. . . . . . . . . 9
2.2 硒化銦介紹. . . . . . . . . . . . . 12
第三章硒化銦材料檢測與特性.... 17
3.1 硒化銦拉曼光譜檢測. . . . . . . 17
3.2 硒化銦光致螢光光譜檢測. . . . 20
3.3 硒化銦原子力顯微鏡檢測. . . . . 23
3.4 X射線光電子能譜檢測. . . . . . . . 24
第四章硒化銦場效電晶體製作流程... 27
4.1 硒化銦表面氧化. . . . . . . . . . . . . 28
4.1.1 不同氧化條件的材料檢測. . . . . 28
4.2 元件製作流程. . . . . . . . . . . . . . . . 32
4.2.1 金屬遮罩 . . . . . . . . . . . . . . . . . 32
4.2.2 熱蒸鍍系統 . . . . . . . . . . . . . . . 34
4.2.3 電子束微影. . . . . . . . . . . . . . . . 35
第五章硒化銦場效電晶體量測結果與分析....... 37
5.1 氧化時間對元件載子遷移率的影響. . . . . . 37
5.2 低壓氧化元件的電流對時間量測比較 . . . . 44
5.3 電子束微影對元件載子遷移率的影響. . . . . . 50
第六章硫化鉛量子點對硒化銦場效電晶體的影響...... 53
6.1 硫化鉛量子點的載子轉移機制 . . . . . . 53
6.2 硫化鉛量子點覆蓋元件製作流程. . . . . 54
6.3 硫化鉛量子點覆蓋元件量測結果與討論. . . . . 55
第七章結論與未來展望................... 61
參考文獻....................... 63
[1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Phys. Rev., vol. 74, pp. 230–231, Jul 1948.
[2] http://www.cedmagic.com/history/transistor-1947.html.
[3] http://www.astrosurf.com/luxorion/qsl-ham-history10.htm.
[4] G. E. Moore, “Cramming more components onto integrated circuits, reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.,” IEEE Solid-State Circuits Society Newsletter, vol. 11, pp. 33–35, sep 2006.
[5] http://www.monolithic3d.com/blog/archives/07-2013.
[6] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, and M. Buehler, “A 45nm logic technology with high-k metal gate transistors, strained silicon, 9 cu interconnect layers, 193nm dry patterning, and 100% pbfree packaging,” in 2007 IEEE International Electron Devices Meeting, IEEE, dec 2007.
[7]https://slideplayer.com/slide/2645842/9/images/39/Drain+Induced+Barrier+Lowering+contE28099d.jpg.
[8] https://kknews.cc/news/j9yjn6.html.
[9] C. Hu, J. Bokor, T.-J. King, E. Anderson, C. Kuo, K. Asano, H. Takeuchi,J. Kedzierski, W.-C. Lee, and D. Hisamoto, “FinFET-a self-aligned doublegate MOSFET scalable to 20 nm,” IEEE Transactions on Electron Devices, vol. 47, no. 12, pp. 2320–2325, 2000.
[10] https:// www.semiwiki.com/ forum/ content/ 1908-finfet-modeling-extraction-16-nm.html.
[11] K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, vol. 146, no. 9, pp. 351 – 355, 2008.
[12] L. Solymar and D. Walsh, Electrical Properties of Materials. Oxford University Press, 2004.
[13] J. Bardeen, “Surface states and rectification at a metal semi-conductor contact,” Phys. Rev., vol. 71, pp. 717–727, May 1947.
[14] H. Hasegawa and T. Sawada, “On the electrical properties of compound semiconductor interfaces in metal/insulator/ semiconductor structures and the possible origin of interface states,” Thin Solid Films, vol. 103, no. 1, pp. 119 – 140, 1983.
[15] V. Heine, “Theory of surface states,” Phys. Rev., vol. 138, pp. A1689–A1696, Jun 1965.
[16] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin, S. Park, and W. J. Yoo, “Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides,” ACS Nano, vol. 11, pp. 1588–1596, Feb. 2017.
[17] J. Wang, Q. Yao, C.-W. Huang, X. Zou, L. Liao, S. Chen, Z. Fan, K. Zhang, W. Wu, X. Xiao, C. Jiang, and W.-W. Wu, “High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer,” Advanced Materials, vol. 28, pp. 8302–8308, jul 2016.
[18] J.-R. Chen, P. M. Odenthal, A. G. Swartz, G. C. Floyd, H. Wen, K. Y. Luo, and R. K. Kawakami, “Control of schottky barriers in single layer MoS2 transistors with ferromagnetic contacts,” Nano Lett., vol. 13, pp. 3106–3110, July 2013.
[19] H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett., vol. 14, pp. 3594–3601, June 2014.
[20] Y. Liu, P. Stradins, and S.-H. Wei, “Van der waals metal-semiconductor junction: Weak fermi level pinning enables effective tuning of schottky barrier,” Science Advances, vol. 2, p. e1600069, apr 2016.
[21] R. Islam, G. Shine, and K. C. Saraswat, “Schottky barrier height reduction for holes by fermi level depinning using metal/nickel oxide/silicon contacts,” Applied Physics Letters, vol. 105, p. 182103, nov 2014.
[22] A. Castellanos-Gomez, “Black phosphorus: Narrow gap, wide applications,” J. Phys. Chem. Lett., vol. 6, pp. 4280–4291, Nov. 2015.
[23] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect -transistors,” Nature Nanotechnology, vol. 9, p. 372, Mar. 2014.
[24] S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Özyilmaz,“Electric field effect in ultrathin black phosphorus,” Applied Physics Letters,vol. 104, p. 103106, mar 2014.
[25] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature Chemistry, vol. 5, p. 263, Mar. 2013.
[26] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2:A new direct-gap semiconductor,” Phys. Rev. Lett., vol. 105, p. 136805, Sep 2010.
[27] D. J. Late, B. Liu, J. Luo, A. Yan, H. S. S. R. Matte, M. Grayson, C. N. R. Rao, and V. P. Dravid, “GaS and GaSe ultrathin layer transistors,” Advanced Materials, vol. 24, pp. 3549–3554, jun 2012.
[28] P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett., vol. 13, pp. 1649–1654, Apr. 2013.
[29] P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors,” ACS Nano, vol. 6, pp. 5988–5994, July 2012.
[30] Masato Ishikawa and Takashi Nakayama, “Theoretical investigation of geometry and electronic structure of layered In2Se3,” Japanese Journal of Applied Physics, vol. 36, no. 12A, p. L1576, 1997.
[31] J. O. Island, S. I. Blanter, M. Buscema, H. S. J. van der Zant, and A. Castellanos-Gomez, “Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors,” Nano Lett., vol. 15, pp. 7853–7858, Dec. 2015.
[32] Z. Yang, W. Jie, C.-H. Mak, S. Lin, H. Lin, X. Yang, F. Yan, S. P. Lau, and J. Hao, “Wafer-scale synthesis of high-quality semiconducting twodimensional layered InSe with broadband photoresponse,” ACS Nano, vol. 11, pp. 4225–4236, Apr. 2017.
[33] S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano, vol. 8, pp. 1263–1272, Feb. 2014.
[34] Q. Zhou, Q. Chen, Y. Tong, and J. Wang, “Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection,” Angewandte Chemie International Edition, vol. 55, pp. 11437–11441, aug 2016.
[35] P.-H. Ho, Y.-R. Chang, Y.-C. Chu, M.-K. Li, C.-A. Tsai, W.-H. Wang, C.-H. Ho, C.-W. Chen, and P.-W. Chiu, “High-mobility InSe transistors: The role of surface oxides,” ACS Nano, vol. 11, pp. 7362–7370, July 2017.
[36] D. A. Bandurin, A. V. Tyurnina, G. L. Yu, A. Mishchenko, V. Zólyomi, S. V. Morozov, R. K. Kumar, R. V. Gorbachev, Z. R. Kudrynskyi, S. Pezzini, Z. D. Kovalyuk, U. Zeitler, K. S. Novoselov, A. Patanè, L. Eaves, I. V. Grigorieva, V. I. Fal’ko, A. K. Geim, and Y. Cao, “High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe,” Nature Nanotechnology, vol. 12, p. 223, Nov. 2016.
[37] M. Li, C.-Y. Lin, S.-H. Yang, Y.-M. Chang, J.-K. Chang, F.-S. Yang, C. Zhong, W.-B. Jian, C.-H. Lien, C.-H. Ho, H.-J. Liu, R. Huang, W. Li, Y.-F. Lin, and J. Chu, “High mobilities in layered InSe transistors with indiumencapsulation-induced surface charge doping,” Advanced Materials, vol. 30,p. 1803690, sep 2018.
[38] C. Carlone, S. Jandl, and H. R. Shanks, “Optical phonons and crystalline symmetry of InSe,” physica status solidi (b), vol. 103, pp. 123–130, jan 1981.
[39] G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi, and A. I. Dmitriev, “Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement,”Advanced Materials, vol. 25, pp. 5714–5718, aug 2013.
[40] L. Dobrescu, M. Petrov, D. Dobrescu, and C. Ravariu, “Threshold voltage extraction methods for mos transistors,” in 2000 International Semiconductor Conference. 23rd Edition. CAS 2000 Proceedings (Cat. No.00TH8486), vol. 1, pp. 371–374 vol.1, 10-1.
[41] W. Feng, X. Zhou, W. Q. Tian, W. Zheng, and P. Hu, “Performance improvement of multilayer InSe transistors with optimized metal contacts,” Physical Chemistry Chemical Physics, vol. 17, no. 5, pp. 3653–3658, 2015.
[42] D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid, and C. N. R. Rao, “Hysteresis in single-layer MoS2 field effect transistors,” ACS Nano, vol. 6, pp. 5635–5641, June 2012.
[43] S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim,J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer mos2 crystals,” Nature Communications, vol. 3, p. 1011, Aug. 2012.
[44] Z. Wu, Z. Luo, Y. Shen, W. Zhao, W. Wang, H. Nan, X. Guo, L. Sun, X. Wang, Y. You, and Z. Ni, “Defects as a factor limiting carrier mobility in WSe2: A spectroscopic investigation,” Nano Research, vol. 9, pp. 3622–3631, sep 2016.
[45] D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2d-0d MoS2-PbS quantum dot photodetectors,” Advanced Materials, vol. 27, pp. 176–180, nov 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *