|
[1] S. Zhai et al., “The Requirement Analysis of 400GE FEC for Gen1 PMDs,” IEEE 400Gb/s Ethernet Study Group, July 2013. [Online]. Available: http://www.ieee802.org/3/400GSG/public/13_07/zhai_400_01_0713.pdf. [2] X. Song and D. Dove “Opportunities for PAM4 modulation” Huawei Technologies. [3] S-H. Huang, W-Z. Chen, Y-W. Chang and Y-T. Huang, “A 10-Gb/s OEIC with meshed spatially-modulated photo detector in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp.1158-1169, May 2011. [4] W-Z. Chen and D-S. Lin, “A 90-dB 10-Gb/s optical receiver analog front-end in a 0.18-um CMOS technology,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 15, no. 3, pp. 358–365, Mar. 2007. [5] W-Z. Chen, Y-L. Cheng and D-S. Lin, “ A 1.8V 10-Gb/s Fully Integrated CMOS Optical Receiver Analog Front-End,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1388-1396, Jun. 2005. [6] C-Y. Wang, C-S. Wang, and C-K. Wang, “An 18-mW two-stage CMOS transimpedance amplifier for 10 Gb/s optical application,” IEEE Asian Solid-State Circuits Conference (A-SSCC), 2007. [7] C-F. Liao and S-I. Liu, “40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 642–655, Mar. 2008. [8] S. Bashiri, C. Plett, J. Aguirre and P. Schvan, “A 40Gb/s Transimpedance Amplifier in 65nm CMOS Technology,” in Proc. IEEE Int. Symp. Circuits and Systems, 2010, pp. 757 –760. [9] J. Kim and Buckwalter, J. F. Buckwalter, “A 40-Gb/s optical transceiver front-end in 45 nm SOI CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 3, pp. 1-4, March 2012. [10] J. Kim and J. F. Buckwalter, “Bandwidth enhancement with low groupdelay variation for a 40-Gb/s transimpedance amplifier,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 57, no. 8, pp. 1964–1972, Aug. 2010. [11] S. Shekhar, J. S. Walling, and D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-State Circuits, vol 41, no.11, pp. 2424-2439, Nov.2006. [12] B. Analui and A. Hajimiri, "Bandwidth enhancement for transimpedance amplifiers," in IEEE Journal of Solid-State Circuits, vol. 39, no. 8, pp. 1263-1270, Aug. 2004. [13] C-H. Wu, C-H. Lee, W-S. Chen and S-I. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 548-552, Feb. 2005. [14] J. Kim and J. F. Buckwalter, "Bandwidth Enhancement With Low Group-Delay Variation for a 40-Gb/s Transimpedance Amplifier," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 8, pp. 1964-1972, Aug. 2010. [15] R. Ding, Z. Xuan, T. Baehr-Jones and M. Hochberg, "A 40-GHz bandwidth transimpedance amplifier with adjustable gain-peaking in 65-nm CMOS," 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS), College Station, TX, 2014, pp. 965-968. [16] D. Schoeniger, R. Henker and F. Ellinger, "A high-speed energy-efficient inductor-less transimpedance amplifier with adjustable gain for optical chip-to-chip communication," 2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Porto de Galinhas, 2015, pp. 1-5. [17] I. García López, A. Awny, P. Rito, M. Ko, A. C. Ulusoy and D. Kissinger, "100 Gb/s Differential Linear TIAs With Less Than 10 pA/√Hz in 130-nm SiGe:C BiCMOS," in IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 458-469, Feb. 2018. [18] D. Schoeniger, R. Henker, S. Schumann and F. Ellinger, "A low-noise energy-efficient inductor-less 50 Gbit/s transimpedance amplifier with high gain-bandwidth product in 0.13 µm SiGe BiCMOS," 2013 International Semiconductor Conference Dresden - Grenoble (ISCDG), Dresden, 2013, pp. 1-5. [19] M. Atef and H. Zimmermann, “Optical receiver using noise cancelling with an integrated photodiode in 40 nm CMOS technology,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 60, no. 7, pp. 1929-1936, July 2013. [20] Ahmed, M. Najebul, J. Chong, and D-S. Ha, “A 100 Gb/s transimpedance amplifier in 65 nm CMOS technology for optical communications.” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1885-1888, 2014. [21] S. Laszlo, R. Henker, and F. Ellinger, “An inductor-less ultra-compact transimpedance amplifier for 30 Gbps in 28 nm CMOS with high energy-efficiency,” IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2014. [22] M. H. Taghavi, L. Belostotski, and J. W. Haslett, “A bandwidth enhancement technique for CMOS TIAs driven by large photodiodes.” IEEE International NEWCAS Conference, pp. 433-436, 2012. [23] C. Li and S. Palermo, “A low-power 26-GHz transformer based regulated cascode SiGe BiCMOS transimpedance amplifier,” IEEE J. Solid-State Circuits, vol. 48, no. 5, pp.1264-1275, May 2013. [24] Behzad Razavi, “Design of ICs for optical Communications”. [25] 陳聖文, “應用於光連結系統之高速前端電路與光電介面交換機設計,”國立清華大學電子工程研究所碩士論文,2012。 [26] 邱柏崴, “光連結系統之高速收發機電路與交換機設計及量測,”國立清華大學電子工程研究所碩士論文,2013。 [27] 劉彥廷, “超高速光通訊前端電路設計,”國立清華大學電子工程研究所碩士論文,2014。 [28] 廖景輝, “高速光通訊前端類比電路設計,”國立清華大學電子工程研究所碩士論文,2015。 [29] 王柏鈞, “高速光通訊傳輸端電路設計,”國立清華大學電子工程研究所碩士論文,2015。 [30] 李彥鋒, “高速光通訊前端電路設計宇收發元件等效電路建立,”國立清華大學電子工程研究所碩士論文,2016。 [31] 王顥儒, “光通訊高速接收端電路設計,”國立清華大學電子工程研究所碩士論文,2017。 |