帳號:guest(3.128.199.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡孟家
作者(外文):Tsai, Meng-Chia
論文名稱(中文):以鉑原子團簇修飾錫核鈀殼結構增強鉑於氧氣還原反應之質量活性之探究
論文名稱(外文):Heterogeneous Sn – Pd Binary Interface of Pt Clusters Boosts Mass Activity in Oxygen Reduction Reaction
指導教授(中文):楊雅棠
指導教授(外文):Yang, Ya-Tang
口試委員(中文):陳燦耀
莊嘉揚
口試委員(外文):Chen, Tsan-Yao
Juang, Jia-Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063531
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:56
中文關鍵詞:鉑原子氧化還原燃料電池觸媒循環伏安法線性掃描伏安法電化學光鑷子
外文關鍵詞:HeterogeneousOxygen Reduction ReactionPt ClustersMass ActivitycatalystCyclic Voltammetry
相關次數:
  • 推薦推薦:0
  • 點閱點閱:227
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
本研究利用濕式化學還原法,以硼氫化鈉(NaBH4)作為還原劑,依序將錫、鈀、鉑金屬離子還原至多層奈米碳管,形成錫核鈀殼結構外層修飾鉑金屬團簇的三元(素)奈米金屬粒子,作為燃料電池陰極觸媒材料,將鉑金屬負載量降至5~13 wt%,與商業鉑金屬觸媒(J.M.-Pt/C)鉑金屬附載量(20 wt%)相比,大幅降低鉑金屬負載量,經鹼性環境下做電化學實驗,其氧氣還原反應位於0.85 V vs RHE的電位下質量活性(M.A.Pd+Pt)為J.M.-Pt/C的兩倍。
  本研究分為三個部分,藉由不同核殼式結構觸媒(Sn@Pd, Sn)與三元觸媒(Pt/Sn@Pd)進行比較,確認三元觸媒的確優於二元觸媒。並改變三元觸媒鉑金屬負載量,以探究不同鉑金屬團簇的分散性與大小對於氧氣還原活性的影響氧氣還原活性的影響。

  本實驗藉由第二種或第三種元素的添加、退火的控制確定了不同鉑金屬結構的變化與觸媒氧氣還原反應之活性之關聯性,並有效的增加其催化電流與減少鉑金屬的使用率,將增加陰離子交換膜燃料電池(AEMFC)發展潛力。
The Pt/Sn@Pd NC is synthesized with ternary metallic, copper, palladium and Platinum by using wet chemical reduction method, which configuration of NC is a Sn@Pd core and atomic Pt clustersin the top. Pt are well known for their unique electrocatalytic properties but it’s expensive. In this experiment design, to reduce the cost and enhance oxygen reduction reaction (ORR), the reduction of atomic Pt clusters loading in Pt/Sn@Pd NC (5~13 wt %) compares with commercial Pt catalysts (20 wt %). At 0.85 volt (vs RHE), the mass activity (MA) of Pt/ Sn@Pd NC which is 2-times higher than Pt catalysts.
In this dissertation, compared the properties of dispersivity and size of Pt clusters and stability in ORR with (ⅰ) ternary metallic NC (Pt/Sn@Pd) and binary metallic catalyst (Sn@Pd, Sn) (ⅱ) difference Pt clusters loading in Pt/Sn@Pd (ⅲ) annealing of ternary metallic NC. In addition, Binding energy is verified that the electrons are obviously transferred from Sn to Pt and higher activity for ORR.Finally, the annealing of ternary metallic catalysts (Pt/Sn@Pd) are certainly clusters and alloy of Pt structure which is related to activity in ORR. Additionally, Pt/Sn@Pd potentially enhances the current of ORR and reduction amount of Pt. thereby, ternary metallic Pt/Sn@Pd catalyst was better in binary metallic catalyst and commercial Pt so Pt/Sn@Pd was selected to be catalyst.
中文摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 緒論 1
1.1. 燃料電池近年的發展 2
1.2. 燃料電池發電原理 4
1.3. 燃料電池種類、與應用 5
1.3.1. 質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell, PEMFC) 5
1.3.2. 鹼性燃料電池(Alkaline Fuel Cell, AFC) 5
1.3.3. 磷酸燃料電池(Phosphoric Acid Fuel Cell, PAFC) 6
1.3.4. 熔融碳酸鹽燃料電池(Molten Carbonate Fuel Cell, MCFC) 6
1.3.5. 固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC) 6
1.3.6. 陰離子交換膜燃料電池(Alkaline anion Exchange Membrane Fuel cell, AEMFC) 9
1.4. 陰離子交換膜燃料電池發展的技術瓶頸 11
1.5. 氧氣還原反應 12
1.5.1. 酸鹼值對氧氣還原反應的影響 13
1.5.2. 氧氣吸附模式 15
1.6. 研究動機與方法 17
第二章 文獻回顧 18
2.1. 不同金屬材料對於氧氣還原之活性 19
2.2. 觸媒的大小與形貌對於氧氣還原活性的影響 24
2.3. 金屬對氧吸附能對氧氣還原反應的影響 27
2.4. 鉑合金對氧還原活性的影響 28
2.5. 晶格應變(Lattice strain)對氧氣還原反應的影響 30
2.6. 核殼結構對氧氣還原反應的影響 31
2.7. 雙功能機制(Bifunctional Mechanism)對氧氣還原催化活性的影響 32
2.8. 文獻回顧總結 33
第三章 實驗方法 34
3.1. 實驗設計 34
3.2. 實驗流程 35
3.2.1. 鉑金屬團簇/銅核鈀殼金屬(Pt/Sn@Pd)奈米粒子製備流程 35
3.2.2. 電化學實驗流程 36
3.2.3. 循環伏安法(Cyclic Voltammetry, CV) 39
3.2.4. 線性掃瞄伏安法(Linear Sweep Voltammetry, LSV) 42
第四章 結果與討論 45
4.1. 不同金屬核鉑殼結構觸媒對氧氣還原活性的影響 45
4.1.1. 不同金屬核鉑殼結構觸媒-電化學分析 46
4.2. 不同鉑金屬含量觸媒對氧氣還原活性的影響 47
4.2.1. 不同鉑金屬含量觸媒-電化學分析 48
4.3. 不同鉑金屬含量觸媒對氧氣還原活性的影響 49
4.3.1. 不同鉑金屬含量觸媒-電化學分析 49
第五章 結論 51
附錄 52
參考資料 55
1. J. Wisniak, Indian Journal of History of Science, 2015, 50.
2. D. S. Cameron, Platinum Metals Rev., 1978, 22, 38-46.
3. A. Kirubakaran, S. Jain and R. K. Nema, Renewable and Sustainable Energy Reviews, 2009, 13, 2430-2440.
4. Q. He and E. J. Cairns, Journal of The Electrochemical Society, 2015, 162, F1504-F1539.
5. N. M. Marković, T. J. Schmidt and P. N. Ross, Fuel Cells, 2001, 1.
6. D. Garraín, Y. Lechón and C. d. l. Rúa, Smart Grid and Renewable Energy, 2011, 02, 68-74.
7. M. Shao, Q. Chang, J. P. Dodelet and R. Chenitz, Chemical reviews, 2016, 116, 3594-3657.
8. J. Zhang, Z. Xia and L. Dai, Science Advances, 2015, 1.
9. W. Xia, A. Mahmood, Z. Liang, R. Zou and S. Guo, Angewandte Chemie International Edition, 2016, 55, 2650-2676.
10. A. S. Xiaoming Ge, † Delvin Wuu,† Tao An,† Bing Li,† F. W. Thomas Goh,† and T. S. Andy Hor, †,‡ Yun Zong,*,† and Zhaolin Liu*,†, ACS Catalysis, 2015, DOI: 10.1021/acscatal.5b00524, 4643-4667.
11. E. Yeager, Journal of Molecular Catalysis, 1986, 38, 5-25.
12. J. Z. F. H. B. Lima , M. H. Shao , K. Sasaki , M. B. Vukmirovic , E. A. Ticianelli , and R. R. Adzic, J. Phys. Chem., 111, 404–410.
13. M. Shao, Journal of Power Sources, 2011, 196, 2433-2444.
14. Sasaki, K.; Naohara, H.; Choi, Y.; Cai, Y.; Chen, W.-F.; Liu, P.; Adzic, R. R., Highly Stable Pt Monolayer on Pdau Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction. Nature Communications 2012, 3, 1115.
15. M. Shao, A. Peles and K. Shoemaker, Nano letters, 2011, 11, 3714-3719.
16. C. Wang, D. van der Vliet, K.-C. Chang, H. You, D. Strmcnik, J. A. Schlueter, N. M. Markovic and V. R. Stamenkovic, The Journal of Physical Chemistry C, 2009, 113, 19365-19368.
17. Y. K. Chen Chen, Ziyang Huo, Zhongwei Zhu, Wenyu Huang, Huolin L. Xin, Joshua D. Snyder, Dongguo Li, Jeffrey A. Herron, Manos Mavrikakis, Miaofang Chi, Karren L. More, Yadong Li, Nenad M. Markovic, Gabor A. Somorjai, Peidong Yang, Vojislav R. Stamenkovic, Science, 2014, 343, 1339-1343.
18. L. Han, H. Liu, P. Cui, Z. Peng, S. Zhang and J. Yang, Scientific reports, 2014, 4, 6414.
19. R. Xie, Y. Pan and H. Gu, RSC Adv., 2015, 5, 16497-16500.
20. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, The Journal of Physical Chemistry B, 2004, 108, 17886-17892.
21. A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver and J. K. Nørskov, Journal of Molecular Catalysis A: Chemical, 1997, 115, 421-429.
22. Y. Saejeng and N. Tantavichet, Journal of Applied Electrochemistry, 2008, 39, 123-134.
23. T.-Y. Jeon, S. J. Yoo, Y.-H. Cho, K.-S. Lee, S. H. Kang and Y.-E. Sung, The Journal of Physical Chemistry C, 2009, 113, 19732-19739.
24. F. Taufany, C. J. Pan, H. L. Chou, J. Rick, Y. S. Chen, D. G. Liu, J. F. Lee, M. T. Tang and B. J. Hwang, Chemistry, 2011, 17, 10724-10735.
25. V. Stamenkovic, B. S. Mun, K. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley and J. K. Norskov, Angewandte Chemie, 2006, 45, 2897-2901.
26. F.-J. Lai, H.-L. Chou, L. S. Sarma, D.-Y. Wang, Y.-C. Lin, J.-F. Lee, B.-J. Hwang and C.-C. Chen, Nanoscale, 2010, 2, 573-581.
27. S. J. Hwang, S. K. Kim, J. G. Lee, S. C. Lee, J. H. Jang, P. Kim, T. H. Lim, Y. E. Sung and S. J. Yoo, Journal of the American Chemical Society, 2012, 134, 19508-19511.
28. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney and A. Nilsson, Nature Chemistry, 2010, 2, 454-460.
29. S. Xie, S.-I. Choi, N. Lu, L. T. Roling, J. A. Herron, L. Zhang, J. Park, J. Wang, M. J. Kim, Z. Xie, M. Mavrikakis and Y. Xia, Nano letters, 2014, 14, 3570-3576.
30. F. Taufany, C.-J. Pan, J. Rick, H.-L. Chou, M.-C. Tsai, B.-J. Hwang, D.-G. Liu, J.-F. Lee, M.-T. Tang, Y.-C. Lee and C.-I. Chen, ACS Nano, 2011, 5, 9370-9381.
31. S. A. Park, E. K. Lee, H. Song and Y. T. Kim, Scientific reports, 2015, 5, 13552.
32. T. Iwasita, Electrochimica Acta, 2002, 47, 3663-3674.
33. A. R. K. a. G. J. Offe, Physical Chemistry Chemical Physics, 2008,, 10, 3699-3711.
34. Z. Jin, P. Li and D. Xiao, Scientific reports, 2014, 4, 6712.
35. P. W. Menezes, A. Indra, D. González-Flores, N. R. Sahraie, I. Zaharieva, M. Schwarze, P. Strasser, H. Dau and M. Driess, ACS Catalysis, 2015, 5, 2017-2027.
36. W. Vielstich, H. Yokokawa and H. A. Gasteiger, (Book) Handbook of Fuel Cells Fundamentals Technology and Applicotions.
37. M. P. Seah and W. A. Dench, SURFACE AND INTERFACE ANALYSIS, 1979, 1.
38. J. J. Yeh and I.Lindau, 1985.
39. M. Newville, (BOOK) Fundamentals of XAFS, 2004.
40. A. Mottana, Journal of Electron Spectroscopy and Related Phenomena, 2014, 196, 14-19.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *