帳號:guest(3.141.25.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李冠賢
作者(外文):Li, Guan-Sian
論文名稱(中文):可重建近紅外光波段 之微型濾波器陣列光譜儀研製
論文名稱(外文):Fabrication of Miniature Filter-Array-Based Spectrometer for NIR Band
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):翁炳國
羅俊傑
盧峙丞
口試委員(外文):WENG, BING-GUO
LUO, JYUN-JIE
LU, JHIH-CHENG
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063529
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:76
中文關鍵詞:濾波器陣列光檢測器陣列讀出晶片微型光譜儀
外文關鍵詞:Filter arrayphoto detector arrayreadout ICMiniature spectrometerRapid thermal diffusion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:494
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現今的近紅外光光譜儀,其利用樣品之官能基吸收特定波長能量,可以達到非侵入性的檢測,時常應用在水果甜度檢測、塑膠種類分析、甚至是醫療上的用用,檢測血液中的血糖、尿素、脂肪酸等等…,雖然有需多應用,但其體型龐大及笨重,難以推廣到日常生活中,而近年環境永續發展又被國人更加重視,其中環境檢測、及食安意識的興起,更提高了光譜儀的應用價值。我們的目標,是製作一可攜式的微型光譜儀模組,利用其體積小、輕便可攜帶等優勢,將其利用在各種行動裝置中,達到大眾普及的目的。
而我們製作的微型光譜儀主要有三個部分,分別是濾波器陣列、光檢測器陣列以及積體電路晶片。透過濾波器陣列的濾光以及光檢測器陣列接收光資訊,最後由積體電路晶片讀出,再藉由特殊的數學方法,我們便可以還原出入射光的光譜,再利用建立資料庫的方式,達到最後的樣品分析。
本研究主要專注在整個模組的製作,包括濾波器陣列的光學模擬、元件製作,以及配合讀出電路的光檢測器陣列製作,最後將三個獨立的部分,結合為完整的近紅外光光譜儀模組,同時我們也研究讀出資料的處理,數學模組建立以及運算,最後達到完整光譜的重建。而本實驗之微型光譜儀的檢測範圍為900奈米到1700奈米,在此波段範圍下,重建光譜之解析度為12奈米,藉由搭配特殊的數據處理技巧,更可將解析度提高至6奈米。
Today’s Near-Infrared spectrometers, which use the sample’s chemical functional groups to detect the specific wavelength, can achieve non-invasive detection, often apply on fruit sweetness detection, plastic type analysis and even medical application, to detect the blood sugar, urea, fatty acids, etc. Although there are a lot of application for NIR spectrometer, their size is large and heavy, and it is difficult to promote them into daily life. In recent years, people has paid more attention to environmental sustainability; the awareness of environmental protection and the rise of food safety problems have also increased the application value of spectrometers. The advantage of miniature spectrometer is its small size, lightweight and portability.
Our target is to create a portable miniature spectrometer module that can use in a variety of mobile devices. The miniature spectrometer we produced has three main parts, filter array, photodetector array and the integrated circuit chip. Filtering light through the filter array and receive transmission light information by our photodetector, and finally read out by the integrated circuit, with the read out raw data, we can reconstruct the spectrum of the incident light by special mathematical method. With this spectrum reconstruction, we can build the database for any sample. Final sample analysis achieved.
This research mainly focuses on the construction of the entire spectrometer module. Including optical simulation of filter arrays, fabrication of filter array and photodetector array. We will combine three independent parts into a complete Near-infrared spectrometer. Meanwhile, we also study the processing of data, we establish mathematical module and the calculations, and finally reconstruct the complete spectrum.
The miniature spectrometers in this work can apply to sense from 900nm to 1700nm, which is as same as the detection range of the photodetectors we used in the measurements. The resolution of the reconstructed spectrum in our research is 12nm and a better resolution of 6nm can achieve by using some special data processing techniques.
摘 要 I
Abstract II
誌 謝 IV
Contents V
List of Figures VII
Chapter 1 Introduction 1
1-1 Miniature SWIR Spectrometer 1
1-2 Research Motivation 2
1-2-1 Filter Array 3
1-2-2 Photodetector Array with PIN structure 4
1-2-3 Combination of Filter Array, PD Array and Readout IC 5
Chapter 2 Basic Theory 7
2-1 Spectrum Reconstruction by Filter Array and PD Array 7
2-2 Ill-posed System 8
2-3 Condition Number 10
2-4 Mathematical Operations and Signal Processing Technique 12
2-4-1 Convex problem and CVX 12
2-4-2 Sparse Representation 13
2-5 Basic Theory of InGaAs PIN structure Photodiode 16
2-5-1 InGaAs photodiode material property 16
2-5-2 Junction Capacitance 17
2-5-3 Dark Current Mechanism 18
2-5-4 Responsivity and Quantum Efficiency 19
2-5-5 Transmission Line Measurement 19
Chapter 3 Design and Fabrication 26
3-1 Model of the Miniature Spectrometer 26
3-2 Filter Array Process 27
3-2-1 Mask design of the Filter 27
3-2-2 Simulation of the Optical Properties 28
3-2-3 Process Flow for Discrete filter and filter array 30
3-3 Photodetector Array Process 34
3-3-1 Epitaxy Structure of the Photodetector Array 35
3-3-2 The Photodetector Array mask design 35
3-3-3 Thermal Drive-in Process – RTD (Rapid Thermal Diffusion) 36
3-3-4 Fabrication Process of Photodetector Array 37
3-4 Miniature Spectrometer Process 42
3-4-1 Backside filter process 42
3-4-2 Indium Bonding and Bonding Process 43
3-4-3 Chip on Board (COB) and Wire Bond 43
3-5 Measurement System 44
3-5-1 I-V Characteristic Measurement System 44
3-5-2 I-V Responsivity Measurement 44
Chapter 4 Results and Discussion 58
4-1 Photodetector Ohmic Contact & TLM 59
4-2 Diffusion Temperature and IV Characteristic 61
4-3 Diffusion Depth and Optical Property 62
4-4 CV Measurement 63
4-5 Responsivity Measurement 64
4-6 Miniature Spectrometer Demonstration 65
Chapter 5 Conclusion 72
Reference 74
Reference
[1] U. Kurokawa, B. I. Choi, and C.-C. Chang, "Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization," IEEE Sensors Journal, vol. 11, no. 7, pp. 1556-1563, 2011.
[2] J. Jerman, D. Clift, and S. Mallinson, "A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support," in Solid-State Sensor and Actuator Workshop, 1990. 4th Technical Digest., IEEE, 1990, pp. 140-144: IEEE.
[3] D. Rossberg, "Silicon micromachined infrared sensor with tunable wavelength selectivity for application in infrared spectroscopy," Sensors and Actuators A: Physical, vol. 47, no. 1-3, pp. 413-416, 1995.
[4] N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, "Tunable infrared detector with integrated micromachined Fabry-Perot filter," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 7, no. 2, p. 021004, 2008.
[5] Y. Muramoto and T. Ishibashi, "InP/InGaAs pin photodiode structure maximising bandwidth and efficiency," Electronics Letters, vol. 39, no. 24, pp. 1749-1750, 2003.
[6] B. E. Bayer, "Color imaging array," ed: Google Patents, 1976.
[7] S. Forrest, I. Camlibel, O. Kim, H. Stocker, and J. Zuber, "Low dark-current, high-efficiency planar In 0.53 Ga 0.47 As/InP PIN photodiodes," IEEE Electron Device Letters, vol. 2, no. 11, pp. 283-285, 1981.
[8] M. H. Ettenberg, M. J. Lange, A. R. Sugg, M. J. Cohen, and G. H. Olsen, "Zinc diffusion in InAsP/InGaAs heterostructures," Journal of Electronic Materials, vol. 28, no. 12, pp. 1433-1439, 1999.
[9] G. Van Gurp, T. Van Dongen, G. Fontijn, J. Jacobs, and D. Tjaden, "Interstitial and substitutional Zn in InP and InGaAsP," Journal of applied physics, vol. 65, no. 2, pp. 553-560, 1989.
[10] M. Wada, M. Seko, K. Sakakibara, and Y. Sekiguchi, "Zn diffusion into InP using dimethylzinc as a Zn source," Japanese Journal of Applied Physics, vol. 28, no. 10A, p. L1700, 1989.
[11] C.-C. Huang, C.-L. Ho, and M.-C. Wu, "Large-Area Planar Wavelength-Extended InGaAs pin Photodiodes Using Rapid Thermal Diffusion With Spin-On Dopant Technique," IEEE Electron Device Letters, vol. 36, no. 8, pp. 820-822, 2015.
[12] C.C.Jou. (2010). ill-posed system. Available: https://ccjou.wordpress.com/2010/06/22/%E7%97%85%E6%85%8B%E7%B3%BB%E7%B5%B1/
[13] N. Bourbaki, "Topological vector spaces," in Elements of the History of Mathematics: Springer, 1994, pp. 207-218.
[14] D. A. Belsley, E. Kuh, and R. E. Welsch, Regression diagnostics: Identifying influential data and sources of collinearity. John Wiley & Sons, 2005.
[15] M. C. G. a. S. P. Boyd. (2012). CVX Research, Inc. Available: http://cvxr.com/cvx/
[16] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.
[17] W.-B. Lee, C. Kim, G. W. Ju, Y. T. Lee, and H.-N. Lee, "Design of thin-film filters for resolution improvements in filter-array based spectrometers using DSP," in Next-Generation Spectroscopic Technologies IX, 2016, vol. 9855, p. 98550Q: International Society for Optics and Photonics.
[18] D. A. Neamen, Semiconductor physics and devices. McGraw-Hill New York, 1997.
[19] R. W. Hoogeveen and A. P. Goede, "Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere," Infrared Physics & Technology, vol. 42, no. 1, pp. 1-16, 2001.
[20] Y. Chang, "The capacitance of pn junctions," Solid-State Electronics, vol. 10, no. 4, pp. 281-287, 1967.
[21] X. Wang et al., "Dark current simulation of InP/In0. 53Ga0. 47As/InP pin photodiode," Optical and quantum electronics, vol. 40, no. 14-15, pp. 1261-1266, 2008.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *