帳號:guest(3.148.113.219)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):侯語笙
作者(外文):Hou, Yu-Sheng
論文名稱(中文):表面氧化對硒化銦場效電晶體光電特性之影響
論文名稱(外文):Effect of Surface Oxidation on Electro-Optical Properties of InSe Field-Effect Transistors
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):闕郁倫
李奎毅
口試委員(外文):Chueh, Yu-Lun
Lee, Kuei-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063527
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:77
中文關鍵詞:硒化銦光電特性場效電晶體
外文關鍵詞:InSeeletro-optical propertiesfield-effect transistors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:779
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
二維材料(2D-materials)被認為有機會能取代矽(Si),成為新的半導體材料。除了常見的石墨烯(Graphene)和過渡金屬二硫族化物(Transition metal dichalcogenides, TMDCs)以外,三六族化合物半導體最近也被拿來廣泛研究,其中硒化銦(InSe)為一種n型的半導體材料,塊材時具有1.26 eV的直接能隙,隨著厚度的降低能隙會逐漸上升,到了最後會轉變為間接能隙。論文中使用機械剝離法撕出厚度為14到15 nm左右的硒化銦晶體,藉由光致螢光(Photoluminescence, PL)光譜的檢測顯示能隙為1.33 eV,此能隙大小對應到紅外光的波段,因此整個可見光到紫外光的波段都能被偵測到。本論文中探討了表面氧化對硒化銦的影響,利用反應離子蝕刻機產生氧電漿對材料表面進行氧化,不同的氧化時間會得到不同的元件遷移率及光響應,其中以氧化25秒的元件具有較大的遷移率為235 cm^2/Vs,而在閘極偏壓為80 V、白光入射光強度為0.08 mW/cm^2時量測到的光響應為8.362*10^3 A/W,同一個元件改為使用綠光照射並計算外部量子效率,其數值達到19141%。此外對氧化25秒的元件進行探測率的計算得到1.4*10^13 Jones,最後針對氧化25秒的元件在關狀態下量測光電流對時間的變化,亮電流降到暗電流的時間為150微秒,暗電流升到亮電流的時間為50微秒,為相當快的響應速度。另外本論文結合量子點與硒化銦,試圖藉由量子點來更進一步強化硒化銦的光電特性,但由於硒化銦本身不穩定的化學性質,因此沒有看到預期的效果。
Group III-VI compound semiconductors are one of important 2D-materials. The most intensively studied group III–VI material with MX stoichiometry is InSe. Bulk InSe is a typical n-type semiconductor with a direct band gap of 1.26 eV. The direct band gap of InSe used in this thesis is about 1.33 eV corresponding to the PL spectra. This value correspond to the thickness of about 14-15 nm. The InSe photodetectors are broad spectra responsive from UV-visible to near infrared. In this thesis, we discuss the effect of surface oxidation on InSe. Different oxidation time creates distinct trap concentration in InSe. For the InSe FET oxidized for 25 seconds, the electron mobility is up to 235 cm^2/Vs at room temperature. It also have high response to visible light, exhibiting a photoresponsivity of 8.362*10^3 A/W under white light illumination with irradiance of 0.08 mW/cm^2. The EQE of the same device reaches 19141% under green light illumination with the wavelength of 530 nm and irradiance of 0.08 mW/cm^2. The device exists ultrafast response. The rise time and fall time is about 50 us and 150 us respectively. We deposit PbS quantum dots on the surface of InSe by spin-coating to enhance the performance of the devices. The unsatisfying result may attribute to the reaction between InSe and solutions used in ligands exchange process. PbS cannot work without ligands exchang because the original ligands attached on the surface of PbS quantum dots are too long for electrons to transfer into InSe.
Abstract......................................................I
摘要........................................................III
目錄.........................................................VI
第一章 序論...................................................1
1.1 半導體的歷史與演進.........................................1
1.2 矽基半導體微縮的侷限.......................................3
1.3 半導體光電元件.............................................6
1.3.1 光偵測器................................................7
1.3.2 光導體..................................................9
1.4論文結構...................................................12
第二章 二維材料介紹............................................13
2.1 二維材料的發展............................................13
2.2 三六族化合物介紹...........................................15
第三章 硒化銦材料分析..........................................21
3.1 拉曼光譜檢測..............................................21
3.2 光致螢光光譜檢測...........................................25
3.3 原子力顯微鏡檢測...........................................27
3.4 X射線光電子能譜檢測........................................29
第四章 硒化銦場效電晶體製程介紹.................................31
4.1 硒化銦表面氧化.............................................31
4.2 元件製作流程..............................................36
4.2.1 金屬遮罩................................................36
4.2.2 熱蒸鍍系統..............................................38
第五章 硒化銦場效電晶體的光電量測結果與分析......................41
第六章 硫化鉛量子點對硒化銦場效電晶體的影響......................61
6.1 硫化鉛量子點的作用機制介紹..................................61
6.2 硫化鉛量子點元件的製程.....................................64
6.3 硫化鉛量子點元件的光電量測結果與討論........................64
第七章 結論與未來展望..........................................69
參考文獻......................................................71
[1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode, ” Physical Review, vol. 74, no. 2, pp. 230–231, 1948.

[2] “The genesis of the transistor, the single greatest discovery
in the last 100 years.” https://www.extremetech.com/extreme/175004-the-genesis-of-the-transistor-the-single-greatest-discovery-in-the-last-100-years.

[3] D. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, et al., “A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm drypatterning, and 100% Pb-free packaging,” Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pp. 247–250, 2007.

[4] D. Hisamoto, W.-C.Lee, J. Kedzierski, H. Takeuchi, K. Asano, C.Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “FinFET-A self-aligned doublegate MOSFET scalable to 20 nm,” IEEE Transactions on Electron Devices, vol. 47, no. 12, pp. 2320–2325, 2000.

[5] S. B. Desai1, S. R. Madhvapathy, A. B. Sachid1, J. PabloLlinas, Q. Wang, G. H. Ahn, G. Pitner, M. Kim, J. Bokor, C. Hu, H.-S. P. Wong, and A. Javey, “MoS2 transistors with 1-nanometer gate lengths,” Science, vol. 354, no. 6308, pp. 99–102, 2016.

[6] H. Liu, A. T. Neal, and P. D. Ye, “Channel length scaling of MoS2 MOSFETs,” ACS Nano, vol. 6, no. 10, pp. 8563–8569, 2012.

[7] H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, “Das adsorptionsverhalten sehr dünner kohlenstoff-folien, ” Zeitschrift für anorganische und allgemeine Chemie, vol. 316, no. 3-4, pp. 119–127, 1962.

[8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbonfilms,” Science, vol. 306, no. 5696, pp. 666–669, 2004.

[9] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth,T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, no. 5881, p. 1308, 2008.

[10] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nature Nanotechnology, vol. 3, no. 4, pp. 206–209, 2008.

[11] S. Rathi, I. Lee, D. Lim, J. Wang, Y. Ochiai, N. Aoki, K. Watanabe, T. Taniguchi, G.-H. Lee, Y.-J. Yu, P. Kim, , and G.-H. Kim, “Tunable electrical and optical characteristics in monolayer graphene and few-layer MoS2 heterostructure devices,” Nano Letters, vol. 15, no. 8, pp. 5017–5024, 2015.

[12] W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, , and J. T. L. Thong, “Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes,” ACS Nano, vol. 9, no. 1, pp. 869–877, 2014.

[13] “神奇的二維材料-graphene 與 MoS2.” http://www.ndl.org.tw/docs/publication/21_2/pdf/E1.pdf.

[14] A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2,” Physical Review B, vol. 83, no. 24, pp. 2452131–2452134, 2011.

[15] “Molybdenum disulfide powders and solutions.” https://www.ossila.com/ products/molybdenum-disulfide-powders-and-solutions.

[16] R. H. Bube and E. L. Lind, “Photoconductivity of gallium selenide crystals,” Physical Review, vol. 115, no. 5, pp. 1159–1164, 1959.

[17] V. Capozzi and M. Montagna, “Optical spectroscopy of extrinsic recombinations in gallium selenide,” Physical Review B, vol. 40, no. 5, pp. 3182–3190, 1989.

[18] W. Jie, X. Chen, D. Li, L. Xie, Y. Y. Hui, S. P. Lau, X. Cui, and J. Hao, “Layerdependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer GaSe sheets,” Angewandte Chemie International Edition, vol. 54, no. 4, pp. 1185–1189, 2015.

[19] A. Kuhn, A. Chevy, and R. Chevalier, “Crystal structure and interatomic distances in GaSe,” physica status solidi A, vol. 31, no. 2, pp. 469–475, 1975.

[20] A. Bergeron, J. Ibrahim, R. Leonelli, and S. Francoeur, “Oxidation dynamics of ultrathin GaSe probed through Raman spectroscopy,” Applied Physics Letters, vol. 110, no. 24, p. 241901, 2017.

[21] F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. I. Falko, and K. Tanigaki, “High-sensitivity photodetectors based on multilayer GaTe flakes,” ACS Nano, vol. 8, no. 1, pp. 752–760, 2014.

[22] D. N. Bose and S. Pal, “Photoconductivity, low-temperature conductivity, and magnetoresistances tudies on the layered semiconductor GaTe,” Physical Review B, vol. 63,no. 23,p. 235321, 2001.

[23] Z. Wang, K. Xu, Y. Li, X. Zhan, M. Safdar, Q. Wang, F. Wang, and J. He, “Role of Ga vacancy on a multilayer GaTe phototransistor,” ACS Nano,vol. 8,no. 5, p. 4859-4865, 2014.

[24] J. Susoma, J. Lahtinen, M. Kim1, J. Riikonen1, and H. Lipsanen, “Crystal quality of two-dimensional gallium telluride and gallium selenide using Ramanfingerprint,” AIP Advances, vol. 7, no. 1, p. 015014, 2017.

[25] M. Lin, D. Wu, Y. Zhou, W. Huang, W. Jiang, W. Zheng, S. Zhao, C. Jin, Y. Guo, H. Peng, and Z. Liu, “Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy,” J. Am. Chem. Soc., vol. 135, no. 36, p. 13274-13277, 2013.

[26] H. T. El-Shair and A. E. Bekheet, “Effect of heat treatment on the optical properties of In2Se3 thin films,” Journal of Physics D: Applied Physics, vol. 25, no. 7, pp. 1122–1130, 1992.

[27] W. Li, F. P. Sabino, F. C. de Lima, T. Wang, R. H. Miwa, and A. Janotti, “Large disparity between optical and fundamental band gaps in layered In2Se3,” Physical Review B, vol. 98, no. 16, p. 165134, 2018.

[28] G. W. Mudd, A. Patanè, Z. R. Kudrynskyi, M. W. Fay, O. Makarovsky, L. Eaves, Z. D. Kovalyuk, V. Zólyomi, and V. Falko, “Quantum confined acceptors and donors in InSe nanosheets,” Applied Physics Letters, vol. 105, no. 22, p. 221909, 2014.

[29] T. Ikari, S. Shigetomi, and K. Hashimoto, “Crystal structure and Raman spectra of InSe,” physica status solidi B, vol. 111, no. 2, pp. 477–481, 1982.

[30] G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi, and A. I. Dmitriev, “Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement,” Advanced Materials, vol.2 5, no. 40, pp. 5714–5718, 2013.

[31] W. Feng, W. Zheng, W. Cao, and P. Hu, “Backgated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface,” Advanced Materials, vol. 26, no. 38, pp. 6587–6593, 2014.

[32] D. A. Bandurin1, A. V. Tyurnina, G. L. Yu1, A. Mishchenko1, V. Zólyomi, S. V. Morozov, R. K. Kumar, R. V. Gorbachev, et al., “High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe,” Nature Nanotechnology, vol. 12, no. 3, p.223-227, 2016.

[33] P.-H. Ho, Y.-R. Chang, Y.-C. Chu, M.-K. Li, C.-A. Tsai, W.-H. Wang, C.-H. Ho, C.-W. Chen, and P.-W. Chiu, “High-mobility InSe transistors: The role of surface oxides,” ACS Nano, vol. 11, no. 7, p. 7362-7370, 2017.

[34] W. Feng, X. Zhou, W. Q. Tian, W. Zhengab, and P. Hu, “Performance improvement of multilayer InSe transistors with optimized metal contacts,” Phys. Chem. Chem. Phys., vol. 17, no. 5, pp. 3653–3658, 2015.

[35] S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS nano, vol. 8, no. 2, p. 1263-1272, 2014.

[36] Z. Yang, W. Jie, C.-H. Mak, S. Lin, H. Lin, X. Yang, F. Yan, S. P. Lau, and J. Hao, “Wafer-scale synthesis of high-quality semiconducting two dimensional layered InSe with broadband photoresponse,” ACS nano, vol. 11, no. 4,p. 4225-4236, 2017.

[37] Q. Zhou, Q. Chen, Y. Tong, and J. Wang, “Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection,” Angew. Chem. Int. Ed., vol. 55, no. 38, pp. 11437–11441, 2016.

[38] W. Zhu, T. Low, Y.-H. Lee, H. Wang, D. B. Farmer, J. Kong, F. Xia, and P. Avouris, “Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition,” Nature Communications, vol. 5, no. 3087, pp. 1–8, 2014.

[39] J. O. Island, S. I. Blanter, M. Buscema, H. S. J. van der Zant, and A. Castellanos-Gomez, “Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors,” ACS nano, vol. 15, no. 12, p. 7853-7858, 2015.

[40] D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid, and C. N. R. Rao, “Hysteresis in single-layer MoS2 field effect transistors,” ACS nano, vol. 6, no. 6, p. 5635-5641, 2012.

[41] S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nature Communications, vol. 3, no. 1011, pp. 1–7, 2012.

[42] D. F. Garcia-Gutierrez, L. P. Hernandez-Casillas, M. V. Cappellari, F. Fungo, E. Martínez-Guerra, and D. I. García-Gutierrez, “Influence of the capping ligand on the bandgap and electronic levels of PbS nanoparticles through surface
atomistic arrangement determination,” ACS Omega, vol. 3, no. 1, p. 393-405, 2018.

[43] D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2-PbS quantum dot photodetectors,” Advanced Materials, vol. 27, no. 1, pp. 176–180, 2015.

[44] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nature Nanotechnology, vol. 7, no. 6, pp. 363–368, 2012.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *