帳號:guest(3.128.30.46)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):汪湘惠
作者(外文):Wang, Hsiang-Hui
論文名稱(中文):升頻與降頻光感測元件之研製
論文名稱(外文):Fabrication and Demonstration of Photon Up- and Down- Converter Devices
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):蘇炎坤
謝明勳
李世昌
劉欣茂
口試委員(外文):Su, Yan-Kun
Hsieh, Ming-Hsun
Li, Shih-Chang
Liu, Hsin-Mao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063524
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:93
中文關鍵詞:升頻降頻光檢測器發光二極體砷化銦鎵
外文關鍵詞:up-converterdown-converterphotodetectorLEDInGaAs
相關次數:
  • 推薦推薦:0
  • 點閱點閱:284
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本論文中,我們設計並製作出一光升頻感測元件,有效地將短波紅外光轉換成可見光甚至是紫外光。此升頻感測元件是利用銦凸塊將短波紅外光檢測器與可見光波段發光二極體結合,利用光檢測器接收短波紅外光所產生的光電流流經發光二極體並使其發光以達到光波長轉換的效果。為了達到良好的轉換效率,光檢測器的響應度及發光二極體的發光效率尤其重要,而我們也致力於改善這兩部分。
光檢測器的部分,為了達到較高的響應度及較好的元件特性我們採用平面型P-I-N的結構,其中吸收層以截止波長為1.7 微米的In0.53Ga0.47As作為材料而覆蓋層及基板則是採用與其晶格匹配的磷化銦作為材料。在製程中,我們選用氮化矽作為擴散阻擋層,以蝕刻氮化矽來定義擴散窗,P型則是採用快速熱擴散技術,將未參雜之磷化銦覆蓋層利用鋅原子擴散使之成為P型磷化銦覆蓋層進而形成P-I-N結構之光檢測器。
發光二極體的部分,我們製作了紅光、綠光、藍光及紫外波段的發光二極體,為了達到良好的發光效率,我們皆採用蝕刻出磊晶層高原並將電子電洞侷限在量子井。為了有良好的歐姆接觸,我們在P型區域上成長銦錫氧化物透明導電薄膜層,使電流能夠均勻的分佈並通過量子井。由於我們設計之升頻元件希望吸收紅外光之入射端與放出可見光為不同方向以免互相干擾,所以發光二極體採背向出光。由於其皆成長在藍寶石基板上,我們則在背面進行藍寶石基板減薄以增加出光效率。
至於此升頻感測元件,最初由P-I-N結構之二極體當作接收端分別結合四種不同波長之發光二極體,再以1312nm之雷射光入射進而發出四種不同波長的光。其中以藍光升頻感測元件的轉換效率最高,因為此藍光二極體之外部量子效應對其他三種發光二極體相當高。此升頻元件可操作在2.4 V,轉換效率為0.186 W/W. 由於P-I-N結構的光檢測器響應度最高為1,為了將整體轉換效率提升,我們將原本的光檢測器換為累崩式光檢測器,藍光升頻元件表現亦較其它優秀,其操作電壓為56.4V,轉換效率為0.382 W/W。
基於此升頻元件之概念,我們利用矽之光檢測器取代上述之短波紅外光檢測器,改而吸收可見到近紅外光波段之光源來發出不同波段之可見光,達到升頻或降頻之效果。我們分別以808nm、660nm、532nm以及450nm之雷射光示範,矽光檢測器對於808nm之響應度較其它波段高,所以以808nm為入射光源之升頻元件轉換效率也會比較高。其中搭配藍光之升頻元件,可操作在2.3V,轉換效率為0.158 W/W。
In this thesis, we design and fabricate a photo up-converter device, effectively turn short wave infrared light into visible light and even UV light. The up-converter device is formed by photo detector and light-emitting diode which were connect by indium bump. We use PD to receive SWIR and generate photo-current, when the current flow into LED, it will illuminate visible light to get the effect of wavelength transfer. To get good transform efficiency, the responsivity of PD and the luminous efficiency of LED are especially important, and we are dedicating to improve these two parts.
In the part of photo detector, we use planer-type P-I-N structure to achieve higher responsivity and better characteristic of the device. Among them, we choose In0.53Ga0.47As with a cutoff-wavelength of 1.7-μm as the absorption layer, and use InP as the material of cap layer and substrate which is lattice-match to In0.53Ga0.47As. In the process, we use silicon nitride (SiNx) as the diffusion mask and introduce the rapid-thermal diffusion technique with the zinc-phosphorous-dopant-coating (ZPDC) as the spin-on dopant (SOD) source to form the p-type region and get P-I-N structure photo detector.
In the part of LED, we fabricate red, green, blue and UV band LED. To get good luminous efficiency, we etch a mesa to limit EHP in the quantum well, and deposit Indium Tin Oxide (ITO) current spreading layer for higher brightness and better power efficiency. We hope the device received SWIR side and illuminated side are different side to avoid interference so LED takes back-side illuminate. Due to they were grown on sapphire , we need to grind them to enhance the luminous efficiency.
As for the device, we use P-I-N photodetector as receiver and bond with four different wavelength LED, and use 1312nm laser incident light source and then illuminate four different wavelength light as demonstration. The blue up-converter has the highest conversion efficiency because the EQE of blue LED is higher than other three ones. It can operate at 2.4V, and the conversion efficiency is 0.186 W/W. Considering the highest responsivity of P-I-N PD is 1, in order to improve the conversion efficiency, we change the P-I-N PD into APD. The blue up-converter characteristic is better than other as well, it can operate at 56.4V and the conversion efficiency is 0.382 W/W.
Base on the concept of up-converter, we use Si PD to replace SWIR PD, which can absorb from visible light to NIR to achieve up or down-converter. We use 808nm, 660nm, 532nm, and 450nm laser as demonstration respectively. The responsivity to 808nm is higher than wavelength here in Si PD so the conversion efficiency will higher than the others under 808nm. With the blue Si-converter under 808nm laser, it can operate at 2.3V and the conversion efficiency is 0.158W/W.
摘要 1
Abstract 3
誌謝 5
Contents 6
List of Figures 9
List of Tables 13
Chapter 1. Introduction 14
Chapter 2. The Basic Theory 18
2-1 The Basic Theory of InGaAs Double-Heterojunction P-I-N Photodiodes 19
2-2-1 InGaAs Photodiodes material 21
2-2-2 Junction Capacitance 21
2-2-3 Dark Current Mechanism 24
2-2-4 Responsivity and Quantum Efficiency 25
2-3 The Basic Theory of Light Emitting Diode 26
2-3-1 The I-V Characteristic of LED 27
2-3-2 The Optical Characteristic of LED 30
2-4 Characterization instruments 31
2-4-1 I-V Characteristic Measurement System 32
2-4-2 Optical Characteristic Measurement System 32
2-4-3 Responsivity Spectrum Measurement System 32
Chapter 3. Experimental Procedure 38
3-1 Epitaxial Structure Design 38
3-2 Concepts for Design of Mask 39
3-3 Rapid Thermal Diffusion Process 41
3-4 Fabrication Process of up-converter 41
3-4-1 Fabrication Process of up-converter—PD 42
3-4-2 Fabrication Process of up-converter—LED 46
3-4-3 Fabrication Process of up-converter—Bonding 52
Chapter 4. Results and Disscussion 56
4-1 The optimization of InGaAs PD and LED 56
4-1-1 The adjustment of P-I-N PD diffusion depth 57
4-1-2 The optimization of light output power of LED 58
4-2 Characteristic of P-I-N PD based up-converter 58
4-2-1 Characteristics of InGaAs P-I-N PD and different wavelenth LED 59
4-2-2 Characteristics of different wavelength up-converter 60
4-3 Characteristics of APD-based up-converter 61
4-3-1 Characteristics of APD and different wavelength LED 61
4-3-2 Characteristics of different wavelength up-converter 63
4-4 Extended application- Si based up/down converter 64
4-4-1 Characteristics of Si PD and different wavelength LED 65
4-4-2 Characteristics of different wavelength converter 66
Chapter 5. Conclusions 89
Reference 91

[1] Y. Yang, Y. H. Zhang, W. Z. Shen and H. C. Liu, “Semiconductor infrared up-conversion devices,” Progress in Quantum Electronics, 35, 77-108, 2011.
[2] Luo, H., et al. "Pixelless imaging device using optical up-converter." IEEE Electron Device Letters 25.3 (2004): 129-131.
[3] A. Brillant, “Digital and analog fiber optic communications for CATV and FTTx Applications,” SPIE Press, Washington, Chap. 8, 2008.
[4] V. Swaminathan and A. T. Macrander, “Materials Aspects of GaAs and InP Based Structures,” Prentice Hall, Chap. 1, 1991
[5] R.W.M. Hoogeveen, R.J. van der A, A.P.H. Goede, “Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere,” Infrared Phys. Tech., vol. 42, no. 1, pp. 1–16, 2001.
[6] Donald A. Neaman, “Semiconductor Physics And Device,” 3rd ed, McGraw-Hill, New York, Chap. 7-8, 2003.
[7] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices,” John Wiley & Sons, New York, Chap. 13, 2007.
[8] E.F. Schubert, Light-Emitting Diodes, 2nd ed. Cambridge U.K.: Cambridge Univ. Press, 2006.
[9] Liu, H. C., et al. "QWIP-LED pixelless thermal imaging device." Intersubband Infrared Photodetectors. 2003. 299-313.
[10] Ban, Dayan, et al. "Pixelless 1.5-/spl mu/m up-conversion imaging device fabricated by wafer fusion." IEEE photonics technology letters 17.7 (2005): 1477-1479.
[11] Luo, H., et al. "Optical upconverter with integrated heterojunction phototransistor and light-emitting diode." Applied physics letters88.7 (2006): 073501.
[12] Liu, Hui Chun. "Pixelless infrared-imaging device concept." Photodetectors: Materials and Devices II. Vol. 2999. International Society for Optics and Photonics, 1997.
[13] Yun-Ji, Wang, et al. "Performance of InGaAs detector with SiN diffusion mask." JOURNAL OF INFRARED AND MILLIMETER WAVES 33.4 (2014): 333-336.
[14] Huang, Chi-Chen, Chong-Long Ho, and Meng-Chyi Wu. "Large-Area Planar Wavelength-Extended InGaAs pin Photodiodes Using Rapid Thermal Diffusion With Spin-On Dopant Technique." IEEE Electron Device Letters 36.8 (2015): 820-822.
[15] Huang, Chi-Chen, et al. "Large-area planar InGaAs pin photodiodes with Mg driven-in by rapid thermal diffusion." IEEE Electron Device Letters 35.12 (2014): 1278.
[16] Y. Yang, Y. H. Zhang, W. Z. Shen and H. C. Liu, “Semiconductor infrared up-conversion devices,” Progress in Quantum Electronics, 35, 77-108, 2011.
[17] S. Feng, J. Hu, Y. Lu, B. V. Yakshinskiy, J. D. Wynn, and C. Ghoshet, “Comparative studies of p-type InP layers formed by Zn3As2 and Zn3P2 diffusion,” J. Electron. Mater., vol. 32, pp. 932–934, 2003.
[18] O. J. Pitts, W. Benyon, D. Goodchild, and A. J. SpringThorpe, “Multiwafer zinc diffusion in an MOVPE reactor,” J. Cryst. Growth, vol. 352, no. 1, pp. 249–252, 2012.
[19] Islam, Mohammad, et al. "InGaAs/InP PIN photodetector arrays made by MOCVD based zinc diffusion processes." Infrared Technology and Applications XLII. Vol. 9819. International Society for Optics and Photonics, 2016.
[20] M. R. Ravi, A. DasGupta, and N. DasGupta, “Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment,” J. Cryst. Growth, vol. 268, pp. 359–363, 2004.
[21] Nagi, Richie, et al. "Development of high performance SWIR InGaAs focal plane array." Image Sensing Technologies: Materials, Devices, Systems, and Applications II. Vol. 9481. International Society for Optics and Photonics, 2015.
[22] Ben G. Streetman and Sanjay Kumar Banerjee, “Solid State Electronic Devices,” 6th ed, Prentice Hall, New York, Chap. 8, 2007.
[23] Donald A. Neaman, “Semiconductor Physics And Device,” 3rd ed, McGraw-Hill, New York, Chap. 7-8, 2003.
[24] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices,” John Wiley & Sons, New York, Chap. 13, 2007.
[25] Xu Lin Nguyen, Thi Ngoc Nhien Nguyen, Vinh Thang Chau and Mau Chien Dan,” The fabrication of GaN-based light emitting diodes (LEDs),” Adv. Nat. Sci.: Nanosci. Nanotechnol. vol. 1, no. 2, pp. 5, Aug3, 2010.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *