帳號:guest(3.144.98.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張界烽
作者(外文):Chang, Chieh-Feng
論文名稱(中文):用於DNA檢測之CMOS離子感測場效電晶體
論文名稱(外文):CMOS Ion-Sensitive Field Effect Transistors for DNA Detection
指導教授(中文):盧向成
指導教授(外文):Lu, Shiang-Cheng
口試委員(中文):劉承賢
王玉麟
口試委員(外文):Liu, Cheng-Hsien
Wang, Yu-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063523
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:59
中文關鍵詞:離子感測場效電晶體自組單層膜指叉式電極平板式電極B型肝炎病毒DNA
外文關鍵詞:ion-sensitive field-effect transistorsSelf-assembled monolayersinterdigitated electrodeplanar electrodehepatitis B virus
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1031
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
在醫學治療中,如何快速且精準地檢測出患者所得到的疾病是一個十分重要的課題。
根據統計,有三分之一的人口曾經被B型肝炎病毒傳染,其中全世界肝炎患病率最高的地區在台灣。如果能夠有一種快速與簡易的方式來檢測出血清中較低濃度的B型肝炎病毒載量的話,它有助於B型肝炎病毒感染的早期診斷和預防進一步傳播。
本研究提出以離子感測場效電晶體(ion-sensitive field-effect transistor)來進行低濃度(fM等級)下即時檢測B型肝炎病毒DNA分子,離子感測場效電晶體是使用TSMC 0.35μm CMOS製程來製作,之後藉由自組單層膜固定法將表面官能基與DNA分子修飾在感測器上的絕緣層;在電路設計方面,我們設計不同尺寸的ISFET搭配指叉式電極與平版式電極,來進行感測器特性的探討,其中最好的設計之感測度為32mV/pH。
最後整合讀出電路,用於同時量測多個感測器,且將ISFET電流轉成數位輸出訊號,由於DNA帶負電荷,因此當target DNA與表面probe DNA進行雜和反應後,得到的實驗結果為輸出頻率變化呈現上升趨勢。
How to detect the disease of a patient is a very important issue in medical treatment.
According to statistics, one third of people has been infected with hepatitis B virus, and the region of the highest hepatitis prevalence in the world occurs in Taiwan. If there is a rapid and simple method to detect a lower concentration of hepatitis B viral load in serum, it facilitates early diagnosis of hepatitis B virus infection and prevention of further transmission.
Ion-sensitive field-effect transistors are presented in this case to get a real-time detection of a lower concentration DNA molecules (fM level). Ion-sensing field-effect transistors are fabricated using TSMC 0.35μm CMOS process. And then surface functionalization and DNA molecules are modified on the passivation of sensors by Self-assembled monolayers. In terms of circuit design, we design different sizes of ISFETs with interdigitated electrodes or planar electrodes to explore the characteristics of the sensors. The best sensitivity of the designs in this case is 32mV/pH.
In the end, this scheme can be combined with the readout circuit for the measurement of several sensors and convert the ISFET current to a digital output signal. Due to DNA molecules have the negatively electrical property, the output frequency will be increased when target DNAs hybridize with probe DNAs.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 IX
第1章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 4
第2章 電路設計與模擬 7
2-1 ISFET設計 7
2-2 感測電路設計 10
2-2-1 電路架構 10
2-2-2 放大器 11
2-2-3 電壓緩衝器 12
2-2-4 比較器 13
2-2-5 解碼器與多工器 14
2-3 電路模擬 16
第3章 生醫實驗介紹 21
3-1 介紹生物分子 — DNA 21
3-2 表面修飾步驟 22
3-3 液態環境中電容效應 24
第4章 量測結果與分析 25
4-1 量測設備介紹 25
4-2 晶片結構檢視與PCB板封裝 27
4-3 量測結果 29
4-3-1 pH值標準液環境量測 29
4-3-2 DNA分子感測實驗 38
第5章 結論與未來工作 47
參考文獻 48
附錄 52
[1] Y. Huang, C. Huang, T. Lin, C. Lin, L. Chen, P. Hsiao, B. Wu, H. Hsueh, B. Kuo, H. Tsai, H. Liao, Y. Juang, C. Wang, and S. Lu, "A CMOS cantilever-based label-free DNA SoC with improved sensitivity for hepatitis B virus detection,” IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 6, pp. 820-831, 2013.
[2] J. You, K. Jang, S. Lee, D. Bang, S. Haam, C. Choi, J. Park, and S. Na, "Label-free detection of zinc oxide nanowire using a graphene wrapping method," Biosensors and Bioelectronics, vol. 68, pp. 481-486, 2015.
[3] A. Benvidi, N. Rajabzadeh, H. Zahedi, M. M. Ardakani, M. M. Heidari, and L. Hosseinzadeh, "Simple and label-free detection of DNA hybridization on a modified graphene nanosheets electrode," Talanta. vol. 137, pp. 80-86, 2015.
[4] L. M. Hagelsieb, B. Foultier, G. Laurent, R. Pampin, J. Remacle, J. P. Raskin, and D. Flandre, "Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors," Biosens. Bioelectron, vol. 22, no. 9-10, pp. 2199-2207, 2007.
[5] P. Bergveld, "Development of an ion-sensitive solid-state device for neurophysiological measurement," IEEE Transactions on Biomedical Engineering, vol. 17, no. 1, pp. 70-71, 1970.
[6] M. Sohbati, and C. Toumazou, "Dimension and shape effects on the ISFET performance," IEEE Sensor Journal. vol. 15, no. 3, pp. 1670-1679, 2015.
[7] G. Xu, J. Abbott, and D. Ham, "Optimization of CMOS-ISFET-based biomolecular sensing: analysis and demonstration in DNA detection," IEEE Transactions on Electron Devices, vol. 63, no. 8, pp. 3249-3256, 2016.
[8] L. C. Yen, M. T. Tang, C. Y. Tan, T. M. Pan, and T. S. Chao, "Effect of sensing film thickness on sensing characteristics of dual-gate poly-si ion-sensitive field-effect-transistors," IEEE Electron Device Letters, vol. 35, no. 12, pp. 1302-1304, 2014.
[9] K. Park, H. J. Jang, J. T. Park, and W. J. Cho, "SOI dual-gate ISFET with variable oxide capacitance and channel thickness," Solid-State Electronics, vol. 97, pp. 2–7, 2014.
[10] Y. J. Huang, C. C. Lin, J. C. Huang, C. H. Hsieh, C. H. Wen, T. T. Chen, L. S. Jeng, C. K. Yang, J. H. Yang, F. Tsui, Y. S. Liu, S. Liu, and M. Chen, "High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC," IEEE International Electron Devices Meeting, pp. 747-750, 2015.
[11] D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, and C. Zhou, "Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices," Nano Letters, vol. 4, no. 10, pp. 1919-1924, 2004.
[12] T. Rim, K. Kim, S. Kim, C. K. Baek, and M. Meyyappan, "Improved electrical characteristics of honeycomb nanowire ISFETs," IEEE Electron Device Letters, vol. 34, no. 8, pp. 1059-1061, 2013.
[13] K. Kim, C. Park, T. Rim, M. Meyyappan, and J. S. Lee, "Electrical and pH sensing characteristics of Si nanowire-based suspended FET biosensors," IEEE International Conference on Nanotechnology, pp. 768-771, 2014.
[14] A. A. Ahdal, and C. Toumazou, "ISFET-based chemical switch," IEEE Sensor Journal, vol. 12, no. 5, pp. 1140-1146, 2012.
[15] M. S. Norzin, A. A. Hamzah, F. W. Yunus, J. Yunas, and B. Y. Majlis, "pH sensing characteristics of silicon nitride as sensing membrane based ISFET sensor for artificial kidney," IEEE International Conference on Semiconductor Electronics, pp. 124-127, 2018.
[16] S. Sinha, R. Rathore, S. K. Sinha, R. Sharma, R. Mukhiya, and V. K. Khanna, "Modeling and simulation of ISFET microsensor," ISSS International Conference on Smart Materials, pp. 14-27, 2014.
[17] J. T. Smith, S. S. Shah, M. Goryll, J. R. Stowell, and D. R. Allee, "Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer," IEEE Sensors Journal, vol. 14, no. 4, pp. 937-938, 2013.
[18] I. Lee, D. Kim, J. S. Lee, B. Kim, and C. Park, "A threshold voltage variation calibration algorithm for an ISFET-based low-cost pH sensor system," IEEE Sensors, pp. 1-4, 2015.
[19] D. Welch, S. Shah, S. Ozev, and J. B. Christen, "Experimental and simulated cycling of ISFET electric fields for drift reset," IEEE Electron Device Letters, vol. 34, no. 3, pp. 456-458, 2013.
[20] W. P. Chan, B. Premanode, and C. Toumazou, "An integrated ISFETs instrumentation system in standard CMOS technology," IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1923-1934, 2010.
[21] Y. Hu, and P. Georgiou, "A robust ISFET pH-measuring front-end for chemical reaction monitoring," IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 2, pp. 177-185, 2014.
[22] Y. Jiang, X. Liu, T. C. Dang, X. Huang, H. Feng, Q. Zhang, and H. Yu, "A high-sensitivity potentiometric 65-nm CMOS ISFET sensor for rapid e. coli screening," IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 2, pp. 402-415, 2018.
[23] X. Huang, H. Yu, X. Liu, Y. Jiang, M. Yan, and D. Wu, "A dual-mode large-arrayed CMOS ISFET sensor for accurate and high-throughput pH sensing in biomedical diagnosis," IEEE Transactions on Biomedical Engineering, vol. 62, no. 9, pp. 2224-2233, 2015.
[24] S. M. Peter, M. K. James, P. B. Dhanusha, and H. Mathew, "Dual mode CMOS ISFET sensor for DNA sequencing," International Conference on Intelligent Computing, Instrumentation and Control Technologies, pp. 307-309, 2017.
[25] C. H. Lin, C. H. Hung, C. Y. Hsiao, H. C. Lin, F. H. Ko, and Y. S. Yang, "Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA," Biosensors and Bioelectronics, vol. 24, pp. 3019-3024, 2009.
[26] P. W. Yen, C. W. Huang, Y. J. Huang, M. C. Chen, H. H. Liao, S. S. Lu, and C. T. Lin, "A device design of an integrated CMOS poly-silicon biosensor-on-chip to enhance performance of biomolecular analytes in serum samples," Biosensors and Bioelectronics, vol. 61, pp. 112-118, 2014.
[27] S. O. Kelley, J. K. Barton, N. M. Jackson, L. D. McPherson, A. B. Potter, E. M. Spain, M. J. Allen, and M. G. Hill, "Orienting DNA helices on gold using applied electric fields," Langmuir, vol. 14, no. 24, pp. 6781-6784, 1998.
[28] A. J. Bard, "Electrochemical method: fundamentals, and applications, 2nd Edition," Wiley, 2000.
[29] C. S.Weng, U. Hashim, and W. W. Liu, "The effect of phosphate buffer solution (PBS) concentration on the ion sensitive field-effect transistor (ISFET) detection," IEEE Regional Symposium on Micro and Nanoelectronics, pp. 200-203, 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *