帳號:guest(3.145.84.208)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林子超
作者(外文):Lin, Tz-Chau.
論文名稱(中文):大電流氮化鎵高電子遷移率電晶體 之設計與製作
論文名稱(外文):Design and Fabrication of High Current AlGaN/GaN High Electorn Mobility Transistor
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):王郁琦
邱顯欽
劉嘉哲
口試委員(外文):Chiu, Hsien-Chin
Liu, Zhe-Jia
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063522
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:102
中文關鍵詞:氮化鋁鎵/氮化鎵大電流高電子遷移率氮化鎵電晶體鈍化層多根指叉型結構
外文關鍵詞:AlGaN/GaNHigh currentHigh Electorn Mobility TransistorpassivationMulti finger
相關次數:
  • 推薦推薦:0
  • 點閱點閱:556
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
於本論文中,我們利用氮化鋁鎵/氮化鎵成長在矽基板上,製作大電流高電子遷移率氮化鎵電晶體。由於兩者形成之異質結構擁有高電子濃度及高電子遷移率的特性,能夠提升操作電流並大幅降低元件的導通電阻,減少多餘功率損耗。
首先在製作大電流高電子遷移率氮化鎵電晶體前,針對Schottky gate HEMT與MIS gate HEMT 作探討,並且得到再順偏特性上,MIS gate HEMT相較於Schottky gate HEMT具有提升飽和電流以及增加閘極工作範圍(gate swing)。並且利用氧化矽作為鈍化層,來得到較佳的遲滯特性以及不錯的動態特性。因此基於上述討論的結果,在大電流高電子遷移率氮化鎵電晶體的製作上會使用MIS gate HEMT以及SiO2作為鈍化層的結構作為基礎。
在元件布局上首先是尋找最佳化尺寸設計,發現元件在閘極寬度(WG)為2000μm時具有最大的飽和電流(0.8A)左右,在基於這個單顆元件的尺寸下在採用多根指叉型結構,此目的是用來提升元件電流,使得電流能夠達到數十安培的等級,此外,在多根指叉型結構中,我們也設計了不同閘極寬度(WG),分別20mm、40mm、60mm以及80mm。而當閘極寬度(WG)為80mm時,在順偏特性上能夠達到飽和電流(IDS)26.5A、導通電阻Ron為0.22Ω、閘極漏電流2.5*10-8mA/mm、臨界電壓(VTH)為-9V,而逆偏特性上能夠達到212V的崩潰電壓。


最後我們也成功利用gate recess 的技術製作出增強型的高電子遷移率氮化鎵電晶體,順偏特性上能夠達到飽和電流密度(JDS)414mA/mm、導通電阻Ron為8.4mΩ-mm、閘極漏電流2.8*10-7mA/mm、臨界電壓(VTH)為2.65V,而逆偏特性上能夠達到610V的崩潰電壓。
In this thesis, we use AlGaN/GaN grown on the silicon substrate to fabricate the high power high electron mobility transistors. Due to the high electron concentration and high electron mobility, the heterostructure formed by AlGaN/GaN can increase the current and reduce the on-resistance(Ron) of the device and reduce the excess power loss.
First, before the fabrication of high current HENT, the Schottky gate HEMT and MIS gate HEMT are discussed, the MIS gate HEMT has a higher saturation current and increase the gate swing ,compare with the Schottky gate HEMT, And SiO2 is used as a passivation layer to obtain better hysteresis characteristics and good dynamic characteristics. Therefore, based on the above discussed results, the MIS gate HEMT and SiO2 passivation are used as a basis for the structure in the fabrication of a high-current HEMT.
In the layout of the device, the first is to find the optimal size design. It is found that the device has the maximum saturation current (0.8A) when the gate width (WG) is 2000 μm . Based on the size of this single device(2000μm), the multi-finger structure is used. This purpose is to increase the device current. so that the current can reach the tens of amps. In addition, in the multi-finger structure, we also designed different gate widths (WG) of 20mm, 40mm, 60mm, and 80mm, respectively. When the gate width (WG) is 80 mm, in the forward characteristic, can achieved the saturation current (IDS) 26.5 A, the on-resistance (Ron) 0.22 Ω, the gate leakage current 2.5*10-8 mA/mm, and the threshold voltage (VTH) is -9V, and in the reverse bias characteristic, breakdown voltage can be reach 212V.
Finally, we have also succeeded in using gate recess technology to fabricate the enhancement mode HEMT with a saturation current density (JDS) of 414mA/mm and an on-resistance (Ron) of 8.4mΩ-mm. The leakage current is 2.8*10-7mA/mm, and the critical voltage (VTH) is 2.65V. The reverse bias characteristic can achieve a breakdown voltage of 610V.
摘要 I
ABSTRACT III
致謝 V
TABLE OF CONTENTS VI
LIST OF FIGURES VIII
LIST OF TABLES XII
CHAPTER 1 INTRODUCTION 1
1.1 Research background 1
1.2 Material properties of gallium nitride (GaN) 2
1.3 Spontaneous polarization effect 3
1.4 Piezoelectric polarization effect 4
1.5 2DEG formation mechansim 6
1.6 The 2DEG density of AlGaN/GaN heterostructure 8
1.7 Motivation 9
1.8 Thesis Organization 11
CHAPTER 2 GaN-BASED HIGH ELECTRON MOBILITY TRANSISTORs 16
2.1 Epitaxial growth 16
2.1.1 Basic structure 16
2.1.2 Substrate 16
2.1.3 Nucleation buffer layers 17
2.1.4 GaN channel and AlGaN barrier layer 18
2.1.5 GaN cap layer 20
2.2 Theoretical information about HEMT operation 21
CHAPTER 3 DESIGN AND FABRICAITON OF AlGaN/GaN HEMTs 29
3.1 Epitaxial structure 29
3.2 Device layout design 30
3.2.1 Schottky gate HEMT 30
3.2.2 MIS gate HEMT 30
3.2.3 MIS gate high current HEMT 31
3.2.4 MIS gate enhancement mode HEMT 31
3.3 Process flow for HEMT 32
3.3.1 Schottky gate HEMT 32
3.3.2 MIS gate high current HEMT 35
3.3.3 MIS gate enhancement mode HEMT 40
CHAPTER 4 RESULT AND DISCUSSION 51
4.1 Investigations on electrical performance of AlGaN/GaN structure before fabrication 52
4.1.1 Hall measurement 52
4.1.2 Transmission line model (TLM) measurement 53
4.2 Schottky gate HEMTs vs MIS gate HEMTs 55
4.2.1 Current-Voltage characteristics 55
4.2.2 Off-state characteristics 57
4.2.3 Passivation 59
4.2.4 Dynamic characteristic analysis 62
4.3 High current AlGaN/GaN HEMTs on Si substrate 64
4.3.1 Different gate width (WG) single HEMT characteristics analysis 64
4.3.2 Different gate width(WG) multi finger characteristics analysis 65
4.4 AlGaN/GaN enhancement mode HEMTs on silicon substrate 69
CHAPTER 5 CONSLUSIONS 97
REFERENCE 99

[1] M. Meneghini, G. Meneghesso, and E. Zanoni, "Power GaN Devices," springer, 2017.
[2] A. S. Yalamarthy and D. G. Senesky, "Strain- and temperature-induced effects in AlGaN/GaN high electron mobility transistors," Semiconductor Science and Technology, vol. 31, no. 3, p. 035024, 2016.
[3] O. Ambacher et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, 1999.
[4] X.-G. He, D.-G. Zhao, and D.-S. Jiang, "Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression," Chinese Physics B, vol. 24, no. 6, p. 067301, 2015.
[5] Z. Zhong et al., "Influence of GaN domain size on the electron mobility of two-dimensional electron gases in AlGaN/GaN heterostructures determined by x-ray reflectivity and diffraction," Applied Physics Letters, vol. 80, no. 19, pp. 3521-3523, 2002.
[6] T. Baltynov, V. Unni, and E. M. S. Narayanan, "The world’s first high voltage GaN-on-Diamond power semiconductor devices," Solid-State Electronics, vol. 125, pp. 111-117, 2016.
[7] A. Yamada, T. Ishiguro, J. Kotani, S. Tomabechi, N. Nakamura, and K. Watanabe, "Advantages of the AlGaN spacer in InAlN high-electron-mobility transistors grown using metalorganic vapor phase epitaxy," Japanese Journal of Applied Physics, vol. 55, no. 5S, p. 05FK03, 2016.
[8] I. B. Rowena, S. L. Selvaraj, and T. Egawa, "Buffer Thickness Contribution to Suppress Vertical Leakage Current With High Breakdown Field (2.3 MV/cm) for GaN on Si," IEEE Electron Device Letters, vol. 32, no. 11, pp. 1534-1536, 2011.
[9] J. L. Nariaki Ikeda, Seikoh Yoshida, "Normally-off operation power AlGaN-GaN HFET," IEEE International Symposium on Power Semiconductor Devices, 2004.
[10] A. K. O. Hilt, F. Brunner, E. Bahat-Treidel, "Normally-off AlGaN/GaN HFET with p-type GaN Gate and AlGaN Buffer," IEEE International Symposium on Power Semiconductor Devices, 2010.
[11] S. Einfeldt, H. Heinke, V. Kirchner, and D. Hommel, "Strain relaxation in AlGaN/GaN superlattices grown on GaN," Journal of Applied Physics, vol. 89, no. 4, pp. 2160-2167, 2001.
[12] C. P. Jiang et al., "Subband electron properties of modulation-doped AlxGa1−xN/GaN heterostructures with different barrier thicknesses," Applied Physics Letters, vol. 79, no. 3, pp. 374-376, 2001.
[13] F. B. O. Hilt, E. Cho, A. Knauer, E. Bahat-Treidel, "Normally-off High-Voltage p-GaN Gate GaN HFET with Carbon-Doped Buffer," IEEE International Symposium on Power Semiconductor Devices & IC's, 2011.
[14] E. B.-T. Oliver Hilt, Eunjung Cho, Sebastian Singwald, "Impact of Buffer Composition on the Dynamic On-State Resistance of High-Voltage AlGaN/GaN HFETs," IEEE International Symposium on Power Semiconductor Devices and ICs, 2012.
[15] B. G. Vinayak Tilak, Val Kaper, Hyungtak Kim, Tom Prunty, Joe Smart, James Shealy, "Influence of Barrier Thickness on the High-Power Performance of AlGaN/GaN HEMTs," IEEE Electron Device Letters, 2001.
[16] S. R. Lee et al., "In situ measurements of the critical thickness for strain relaxation in AlGaN∕GaN heterostructures," Applied Physics Letters, vol. 85, no. 25, pp. 6164-6166, 2004.
[17] J. A. del Alamo and J. Joh, "GaN HEMT reliability," Microelectronics Reliability, vol. 49, no. 9-11, pp. 1200-1206, 2009.
[18] T.-S. Ko, D.-Y. Lin, C.-F. Lin, C.-W. Chang, J.-C. Zhang, and S.-J. Tu, "High-temperature carrier density and mobility enhancements in AlGaN/GaN HEMT using AlN spacer layer," Journal of Crystal Growth, vol. 464, pp. 175-179, 2017.
[19] S. Arulkumaran, N. G. Ing, V. Sahmuganathan, L. Zhihong, and B. Maung, "Improved recess-ohmics in AlGaN/GaN high-electron-mobility transistors with AlN spacer layer on silicon substrate," physica status solidi (c), vol. 7, no. 10, pp. 2412-2414, 2010.
[20] T. Nanjo et al., "Enhancement of Drain Current by an AlN Spacer Layer Insertion in AlGaN/GaN High-Electron-Mobility Transistors with Si-Ion-Implanted Source/Drain Contacts," Japanese Journal of Applied Physics, vol. 50, no. 6, p. 064101, 2011.
[21] Y. Y. W. Niraj Man Shrestha, Yiming Li, and E.Y. Chang, " Effect of AlN Spacer Layer on AlGaN-GaN HEMTs," International Workshop on Computational Electronics, 2013.
[22] S. H. L. Shen, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, and a. U. K. Mishra, " AlGaN-AlN-GaN High-Power Microwave HEMT," IEEE Electron Device Letters, 2001.
[23] E. T. Yu et al., "Schottky barrier engineering in III–V nitrides via the piezoelectric effect," Applied Physics Letters, vol. 73, no. 13, pp. 1880-1882, 1998.
[24] N. Man Shrestha, Y. Li, and E. Y. Chang, "Simulation study on electrical characteristic of AlGaN/GaN high electron mobility transistors with AlN spacer layer," Japanese Journal of Applied Physics, vol. 53, no. 4S, p. 04EF08, 2014.
[25] S. Heikman, S. Keller, Y. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, "Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 93, no. 12, pp. 10114-10118, 2003.
[26] S. Taking, "AlN/GaN MOS-HEMTs Technology," University of glasgow, 2012.
[27] V. Z. Aleksei Negencev, Vladimir Egorkin, Valentin Garmash, Aleksei Emelianov "Optimization of Ohmic Contact Fabrication Technology to GaN-based Heterostructures," IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2017.
[28] D.-F. Wang et al., "Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN," Journal of Applied Physics, vol. 89, no. 11, pp. 6214-6217, 2001.
[29] V. Kumar, L. Zhou, D. Selvanathan, and I. Adesida, "Thermally-stable low-resistance Ti/Al/Mo/Au multilayer ohmic contacts on n–GaN," Journal of Applied Physics, vol. 92, no. 3, pp. 1712-1714, 2002.
[30] J. W. Zhihua Dong, Rumin Gong, Shenghou Liu, C. P. Wen, Min Yu, Fujun Xu, and B. S. Yilong Hao, Yangyuan Wang, "Multiple Ti/Al stacks induced thermal stability enhancement in Ti/Al/Ni/Au Ohmic contact on AlGaN/GaN heterostructure," IEEE International Conference on Solid-State and Integrated Circuit Technology, 2010.
[31] N. Chaturvedi, U. Zeimer, J. Würfl, and G. Tränkle, "Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors," Semiconductor Science and Technology, vol. 21, no. 2, pp. 175-179, 2006.
[32] S. L. Zhao et al., "Analysis of the Breakdown Characterization Method in GaN-Based HEMTs," IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1517-1527, 2016.
[33] W. Saito, T. Suwa, T. Uchihara, T. Naka, and T. Kobayashi, "Breakdown behaviour of high-voltage GaN-HEMTs," Microelectronics Reliability, vol. 55, no. 9-10, pp. 1682-1686, 2015.
[34] J.-J. Zhu, X.-H. Ma, B. Hou, W.-W. Chen, and Y. Hao, "Investigation of trap states in high Al content AlGaN/GaN high electron mobility transistors by frequency dependent capacitance and conductance analysis," AIP Advances, vol. 4, no. 3, p. 037108, 2014.
[35] C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, "Capacitance–Voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density Distribution at Al2O3/AlGaN Interface," Japanese Journal of Applied Physics, vol. 50, no. 2, p. 021001, 2011.
[36] T.-L. Wu et al., "Correlation of interface states/border traps and threshold voltage shift on AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors," Applied Physics Letters, vol. 107, no. 9, p. 093507, 2015.
[37] T. K. S. Ohi, H. Tokuda, "Effect of passivation films on DC characteristics of AlGaN/GaN HEMT," IEEE International Meeting for Future of Electron Devices, 2014.
[38] T. E. S. Arulkumaran, H. Ishikawa, and T. Jimbo, "Surface passivation effects on AlGaNÕGaN high-electron-mobility transistors with SiO2, Si3N4 , and silicon oxynitride," Applied Physics Letters, 2004.
[39] H.-K. L. Hsiang-Lin Yu, and Yi-Jen Chan, "Effect of Two-Step E-Beam SiO2 Passivation on AlGaN/GaN HEMT Performance," Extended Abstracts of the 2009 International Conference on Solid State Devices and Materials, 2009.
[40] H.-K. Lin, H.-L. Yu, and F. H. Huang, "Performance improvement of AlGaN/GaN HEMTs using two-step silicon nitride passivation," Microwave and Optical Technology Letters, vol. 52, no. 7, pp. 1614-1619, 2010.
[41] C. Bae, "GaN-dielectric interface formation for gate dielectrics and passivation layers using remote plasma processing," NCSU libraries, 2003.
[42] S. Agnihotri, S. Ghosh, A. Dasgupta, S. A. Ahsan, S. Khandelwal, and Y. S. Chauhan, "Modeling of trapping effects in GaN HEMTs," IEEE Indicon, pp. 1-4, 2015.
[43] N. Ramanan, "Investigation of ALD Dielectrics for Improved Threshold Voltage Stability and Current Collapse Suppression in AlGaN-GaN MOS-HFETs," North Carolina State University, 2014.
[44] R. Ramachandran, "Investigation of Surface States in Gallium Nitride Devices using a New High Frequency Measurement Technique," North Carolina State University, 2006.
[45] W. S. Tan, M. J. Uren, P. W. Fry, P. A. Houston, R. S. Balmer, and T. Martin, "High temperature performance of AlGaN/GaN HEMTs on Si substrates," Solid-State Electronics, vol. 50, no. 3, pp. 511-513, 2006.
[46] A. Pérez-Tomás et al., "Temperature impact and analytical modeling of the AlGaN/GaN-on-Si saturation drain current and transconductance," Semiconductor Science and Technology, vol. 27, no. 12, p. 125010, 2012.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *