帳號:guest(3.144.235.238)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭仁傑
作者(外文):Kuo, Ren-Jay
論文名稱(中文):應用於鰭式場效電晶體邏輯製程下之 一次性寫入記憶體研究
論文名稱(外文):A Study of One-Time Programmable Memory in FinFET Process
指導教授(中文):金雅琴
指導教授(外文):King, Ya-Chin
口試委員(中文):林崇榮
蔡銘進
口試委員(外文):Lin, Chrong-Jung
Tsai, Ming-Jinn
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063521
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:80
中文關鍵詞:一次性寫入記憶體非揮發性記憶體嵌入式記憶體鰭式電晶體
外文關鍵詞:OTPNVMembedded memoryFinFET
相關次數:
  • 推薦推薦:0
  • 點閱點閱:120
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
可攜帶的個人化電子裝置及物聯網( Internet of Things )的興起造成了對資料存取需求的增加。嵌入式非揮發記憶體(Embedded Nonvolatile Memory)能夠相容於CMOS邏輯製程,能與積體電路整合在同一晶片上,因此越來越受到重視。其中一次性寫入記憶體具有體積小,穩定性高的特點,通常被用作程式碼儲存,參數設定、電路校調即備援系統等方面的儲存。
本論文題出了相容於鰭式電晶體邏輯製程的N型一次寫入性記憶體,並且不需要額外的光罩或製程步驟。透過共用選擇電晶體的方式縮小每個位元所需要的面積,提高陣列的密度。此記憶體透過電晶體閘極介電層崩潰得現象作為寫入機制,能夠在低電壓的條件下進行寫入,寫入後有很高的讀取電流比。
本論文中提出的N型一次性寫入記憶體具有有低功耗、高可靠度、元件面積小等優點,且在製程方面無須多餘光罩並且可完全相容於16奈米高介電係數金屬閘極(high-κ metal gate, HKMG) CMOS之邏輯製程及具有高度微縮性,成為未來極具潛力的一次性寫入記憶體。
The rise of portable personal electronic devices and the Internet of Things has led to an increase in demand for data storage. Embedded Nonvolatile Memory can be compatible with CMOS logic process and can be integrated with microprocessor units on the same chip, so it has become in high demand. Due to its small volume and high stability, one time programmable memory (OTP) is usually used as the code storage, parameter settings, circuit trimming and memory redundancy, circuitry.
One-time programmable memory cell has been propose in this paper, besides, this memory cell is fully compatible with FinFET CMOS logic process, without any change in process flow and do not require additional mask. Cell density of this OTP is improved by a DINOR array. The OTP utilizes gate dielectric breakdown as the programming mechanism. Operated at a fairly low voltage, high On/Off read window can be also obtained for this cell.
With low power consumption, high reliability, compact cell size and scalability with FinFET high-κ metal gate CMOS process, this OTP shows great potential for future logic NVM applications
摘要 i
Abstract ii
內文目錄 iii
附圖目錄 v
附表目錄 vii
第一章 序論 1
1.1 一次性寫入記憶體簡介 2
1.2 一次性寫入記憶體結構與原理 2
1.3 一次性寫入記憶體分析及應用 3
1.4 一次性寫入記憶體最佳化設計 3
1.5 論文大綱 4
第二章 一次性寫入記憶體技術與發展 6
2.1 介電層電性崩潰式元件 6
2.1.1 XPMTM 6
2.1.2 1T-FuseTM 7
2.1.3 NeoFuseTM 7
2.1.4 XPMTM、1T-FuseTM及NeoFuseTM比較與討論 8
2.2 導電層熔毀式元件 8
2.3 電荷儲存式元件 9
2.4 特性比較 10
2.5 小結 11
第三章 一次性寫入記憶體 陣列結構與操作原理 19
3.1 元件結構與製程介紹 19
3.2 介電層電性崩潰機制與理論模型 21
3.2.1 熱化學崩潰模型 ( Thermochemical Model ) 21
3.2.2 陽極電洞注入模型 ( Anode Hole Injection Model ) 21
3.2.3 滲透模型 ( Percolation Model ) 22
3.2.4 從屬載子注入模型 ( Generated Subordinate Carrier
Injection Model ) 22
3.3 初始讀取電流傳導機制 23
3.3.1 直接穿隧 (Direct Tunneling)電流模型 23
3.3.2 F-N穿隧 (Fowler-Nordheim Tunneling)電流模型 23
3.3.3 陷阱輔助穿隧 (Trap Assisted Tunneling)電流模型 24
3.4 崩潰後之電性表現 24
3.5 陣列結構及操作分析 25
3.6 小結 26
第四章 一次性寫入記憶體元件量測與分析 39
4.1 量測環境介紹 39
4.2 元件基本電性量測 39
4.2.1 直流掃描崩潰測試 40
4.2.2 操作電壓對寫入速度的影響 40
4.2.3 寫入前後讀取電流量測 40
4.3 n=2之一次性寫入記憶體陣列特性分析 41
4.3.1 單記憶元寫入與讀取測試 41
4.3.2 記憶體陣列結構電性量測結果與分析 41
4.3.3 操作電壓與介電層崩潰後電流特徵量測與分析 43
4.3.4 寫入電壓對寫入速度的影響 44
4.4 元件可靠度分析 45
4.5 小結 46
第五章 Cross-point 陣列結構與模擬結果 67
5.1 Cross-point陣列結構 67
5.2 Cross-point陣列模擬結果 68
5.3 小結 69
第六章 總結 74
參考文獻 75

參考文獻
[1] Kilopass Technology Inc. 2015, “Comparison of Embedded Non-Volatile Memory Technologies and Their Applications.” [ONLINE] Available at: http://www.kilopass.com/wpcontent/ uploads/2015/08/Comparison_of_embedded_nvm_Apr2015.pdf. [Accessed 7 May 2016].
[2] J. Peng, G. Rosendale, M. Fliesler, et al., "A Novel Embedded OTP NVM Using Standard Foundry CMOS Logic Technology," in Non-Volatile Semiconductor Memory Workshop, 2006, pp. 24-26.
[3] J. Z. Peng, "Semiconductor memory cell and memory array using a breakdown phenomena in an ultra-thin dielectric," US Patent # US 6667902 B2, 2003
[4] W. Kurjanowicz, "Split-channel antifuse array architecture," US Patent # US 20080038879 A1, 2008
[5] Rick Shih-Jye Shen, Meng-Yi Wu, Hsin-Ming Chen, Chris Chun-Hung Lu, "A high-density logic CMOS process compatible non-volatile memory for sub-28nm technologies," VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on, IEEE, 2014, pp. 1-2.
[6] C. Kothandaraman, S. K. Iyer, and S. S. Iyer, "Electrically programmable fuse (eFUSE) using electromigration in silicides," Electron Device Letters, IEEE, vol. 23, no.9, 2002, pp. 523-525.
[7] R. S. C. Wang, R. S. J. Shen, and C. C. H. Hsu, "Neobit® - high reliable logic non-volatile memory (NVM)," in Physical and Failure Analysis of Integrated Circuits, 2004, pp. 111-114.
[8] C. S. Yang, S. J. Shen, and C. H. Hsu, "Single poly UV-erasable programmable read only memory," US Patent # US6882574 B2, 2005.
[9] C. C. H. Hsu, Y. T. Lin, and S. J. Shen, "Future prospective of programmable logic non-volatile device," in ASSCC 2006 IEEE Asian, 2006, pp. 35-37.
[10] LEE, Byoung Hun; CHOI, Rino. Dielectric Breakdown characteristics of stacked high-k dielectrics. ECS Transactions, 2009, 19.2: 289-299.
[11] Lee, B. H., Kang, C. Y., Kirsch, P., Heh, D., Young, C. D., Park, H., ... & Lee, H. D. (2007). Electric-field-driven dielectric breakdown of metal-insulator-metal hafnium silicate. Applied Physics Letters, 91(24), 243514.
[12] A. Berman, "Time-Zero Dielectric Reliability Test by a Ramp Method," in Reliability Physics Symposium, 1981, pp. 204-209.
[13] J. McPherson, J.-Y. Kim, A. Shanware, et al., "Thermochemical description of dielectric breakdown in high dielectric constant materials," Applied Physics Letters, vol. 82, 2003, pp. 2121-2123.
[14] J. W. McPherson and H. C. Mogul. "Underlying physics of the thermochemical E model in describing low-field time-dependent dielectric breakdown in sio2 thin films," Journal of Applied Physics, vol. 84, 1998, pp. 1513-1523.
[15] I.-C. Chen, S. E. Holland, and C. Hu, "Electrical breakdown in thin gate and tunneling oxides," Electron Devices, IEEE Transactions on, vol. 32, 1985, pp. 413-422.
[16] DiMaria, D. J., E. Cartier, and D. A. Buchanan. "Anode hole injection and trapping in silicon dioxide." Journal of applied physics 80.1 (1996): 304-317.
[17] DiMaria, D. J., and J. H. Stathis. "Anode hole injection, defect generation, and breakdown in ultrathin silicon dioxide films." Journal of Applied Physics 89.9 (2001): 5015-5024.
[18] R. Degraeve, G. Groeseneken, R. Bellens, et al., "A consistent model for the thickness dependence of intrinsic breakdown in ultra-thin oxides," in Electron Devices Meeting, 1995, pp. 863-866.
[19] Stathis, J. H. "Percolation models for gate oxide breakdown." Journal of applied physics 86.10 (1999): 5757-5766.
[20] Sune, Jordi. "New physics-based analytic approach to the thin-oxide breakdown statistics." IEEE Electron Device Letters 22.6 (2001): 296-298.
[21] K. Okada, W. Mizubayashi, N. Yasuda, et al., "Model for dielectric breakdown mechanism of HfAlOx/SiO2 stacked gate dielectrics dominated by the generated subordinate carrier injection," in Electron Devices Meeting, 2004, pp. 721-724
[22] Satake, Hideki, et al. "Validity of generated subordinate carrier injection model in Al-profiled hfalon dielectrics." Meeting Abstracts. No. 15. The Electrochemical Society, 2006.
[23] Okada, Kenji, et al. "Dielectric breakdown in high-K gate dielectrics-Mechanism and lifetime assessment." Reliability physics symposium, 2007. proceedings. 45th annual. ieee international. IEEE, 2007.
[24] W.-C. Lee, T.-J. King, and C. Hu, "Evidence of hole direct tunneling through ultrathin gate oxide using P/sup +/ poly-SiGe gate," Electron Device Letters, IEEE, vol. 20, no.6, 1999, pp. 268-270.
[25] Y.-C. Yeo, T.-J. King, and C. Hu, "MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations," Electron Devices, IEEE Transactions on, vol.50, no.4, 2003, pp.1027-1035.
[26] R.H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proceedings of the Royal Society of London, Series A 119, 173 (1928).
[27] M. Lenzlinger and E. H. Snow, "Fowler-Nordheim tunneling into thermally grown SiO2," Electron Devices, IEEE Transactions on, vol.15, no.9, 1968, pp. 686.
[28] J. Wu, L. F. Register, and E. Rosenbaum, "Trap-assisted tunneling current through ultra-thin oxide," in Reliability Physics Symposium Proceedings, 1999, pp. 389-395.
[29] Eli Harari, "Dielectric breakdown in electrically stressed thin films of thermal SiO2," Journal of Applied Physics, vol. 49, no.4, 1978, pp.2478-2489.
[30] S. A. Sahhaf, R. Degraeve, P. J. Roussel, et al., "TDDB Reliability Prediction Based on the Statistical Analysis of Hard Breakdown Including Multiple Soft Breakdown and Wear-out," in Electron Devices Meeting, 2007, pp. 501-504.
[31] H. Satake and A. Toriumi, "Dielectric breakdown mechanism of thin-SiO2 studied by the post-breakdown resistance statistics," Electron Devices, IEEE Transactions on, vol. 47, 2000, pp. 741-745.
[32] R. Moonen, P. Vanmeerbeek, G. Lekens, et al., “Study of Time-Dependent Dielectric Breakdown on Gate Oxide Capacitors at High Temperature,” in Physical and Failure Analysis of Integrated Circuits, 2007, pp. 288-291.
[33] J. C. Lee, I.-C. Chen, and C. Hu, "Modeling and Characterization of Gate Oxide Reliability," Electron Devices, IEEE Transactions on, vol. 35, no.12, 1988, pp. 2268-2278.
[34] Dick James, "High-k/metal gates in the 2010s," in SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 2014, pp. 431-438.
[35] Dick James, "Moore's law continues into the 1x-nm era," in SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 2016, pp. 324-329.
[36] I. C. Chen, S. Holland, K. K. Young, et al., "Substrate hole current and oxide breakdown," Applied Physics Letters, vol. 49, no.11, 1986, pp.669-671.
[37] Koji Eriguchia and Masaaki Niwa, "Temperature and stress polarity-dependent dielectric breakdown in ultrathin gate oxides," Applied Physics Letters, vol. 73, no.14, 1998, pp. 1985-1987.
[38] Piero Olivo, Thao N. Nguyen, and Bruno ricco, "High file induced degradation in ultra-thin SiO2 films," Electron Devices, IEEE Transactions on, vol. 35, no.12, 1988, pp. 2259-2267.
[39] H. C. Lin, D. Y. Lee, C. Y. Lee, et al., "New Insights into Breakdown Modes and Their Evolution in Ultra-Thin Gate Oxide." in VLSI Technology, Systems, and Applications, 2001, pp. 37-40.
[40] L.-Y. Yang, M.-C. Hsieh, J.-S. Liu, et al., "A Highly Scalable Interface Fuse for Advanced CMOS Logic Technologies," Electron Device Letters, IEEE, vol. 33, 2012, pp. 245-247.
[41] E. Hamdy, J. McCollum, S. O. Chen, et al., "Dielectric based antifuse for logic and memory ICs," in Electron Devices Meeting, 1988, pp.786-789.
[42] H. Ito and T. Namekawa, "Pure CMOS one-time programmable memory using gate-ox anti-fuse," in Custom Integrated Circuits Conference, 2004, pp. 469-472.
[43] F. Li, X. Yang, A. T. Meeks, et al., "Evaluation of SiO2 antifuse in a 3D-OTP memory," Device and Materials Reliability, IEEE Transactions on, vol. 4, 2004, pp. 416-421.
[44] C.-E. Huang, H.-M. Chen, M.-B. Chen, et al., "A New CMOS Logic Anti-Fuse Cell with Programmable Contact," in Non-Volatile Semiconductor Memory Workshop, 2007, pp. 48-51.
[45] Y.-H. Tsai, H.-M. Chen, H.-Y. Chiu, et al., "45nm Gateless Anti-Fuse Cell with CMOS Fully Compatible Process," in Electron Devices Meeting, 2007, pp. 95-98.
[46] W. T. Chan, K. P. Ng, M. C. Lee, et al., "CMOS-compatible zero-mask One Time Programmable (OTP) memory design," in Solid-State and Integrated-Circuit Technology, 2008, pp. 861-864.
[47] Z. C. Liu, R. F. Zheng, J. W Sun, "A gate-oxide-breakdown antifuse OTP ROM array based on TSMC 90nm process," in International Symposium on Next-Generation Electronics (ISNE), 2015, pp. 1-3.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *