帳號:guest(3.147.75.77)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):施驊育
作者(外文):Shih, Hua-Yu
論文名稱(中文):輻射效應對4H碳化矽元件影響
論文名稱(外文):Study on the Effects of Radiation in 4H-SiC Devices
指導教授(中文):黃智方
指導教授(外文):Huang, Chih-Fang
口試委員(中文):趙得勝
李傳英
口試委員(外文):Chao, Te-Sheng
Lin, Chuan-Ying
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063515
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:90
中文關鍵詞:輻射碳化矽元件中子輻射伽瑪射線
外文關鍵詞:radiation4H-SiC devicesneutron radiationgamma ray
相關次數:
  • 推薦推薦:0
  • 點閱點閱:68
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要探討伽瑪射線和中子輻射對碳化矽元件的影響,伽瑪射線會對半導體材料造成游離效應,中子輻射則對半導體材料造成位移損傷破壞晶格結構。
碳化矽材料有好的抗輻射能力,但元件不一定有好的抗輻射能力,論文中會使用蕭基二極體、金氧半電晶體和電容器等等來進行量測,以觀察元件的變化。觀察到伽瑪射線會在碳化矽跟氧化層的介面處引進氧化層捕捉電荷改變其閾值電壓,且使介面陷阱密度提升。中子輻射則是對元件造成整體的位移損傷,在中子通量為5×1014n/cm2時,會使n type飄移區補償了2.75×1015cm-3到3.91×1015 cm-3濃度,造成飄移區濃度較淡的元件帶來災難性的損壞,且透過深能阱暫態能譜觀察到飄移區有缺陷的存在。
碳化矽元件應調整閾值電壓的數值及設計較薄的氧化層使元件對伽瑪射線有抵抗力。碳化矽元件應把濃度較淡的區域調高其濃度來抵抗中子輻射。
This thesis investigates the effects of gamma ray and neutron radiation in 4H-SiC devices. It is commonly accepted that gamma ray leads to ionization effect, and neutron radiation causes displacement damage to destroy the crystal structure on semiconductor material.
Even though silicon carbide has good radiation resistance, but devices might suffer from different mechanisms can behave differently. In this study we measure 4H-SiC Schottky diodes, MOSFETs and capacitors to investigate their variation. It is observed that gamma ray introduces oxide trapped charge at the SiC/SiO2 interface to change the threshold voltage and increase the density of interface traps. Neutron radiation brings the overall displacement damages to the bulk of the devices. When the neutron flux is 5×1014 n/cm2, 2.75×1015cm-3 to 3.91×1015cm-3 of the doping concentration in the n-type drift layer is compensated and causes catastrophic damage to the devices. The defects in the drift region has also been observed by deep level transient spectroscopy.
It is recommended that 4H-SiC devices should adjust the threshold voltage value and consist a thin gate oxide layer to be gamma ray resistant. 4H-SiC devices should increase the doping concentration in order to be robust against the neutron irradiation
中文摘要 I
Abstract II
目錄 II
圖目錄 VII
表目錄 XIII
第一章序論 1
1.1 碳化矽材料簡介 1
1.2 伽瑪射線(gamma ray) 2
1.3 中子輻射(neutron radiation) 3
1.4 文獻回顧 4
1.4.1 伽瑪射線對碳化矽影響 4
1.4.1 中子輻射對碳化矽影響 5
1.5 研究動機與論文大綱 5
第二章選用的元件介紹及實驗設計 8
2.1 市售的封裝功率元件介紹 8
2.1.1 垂直型雙佈植金氧半電晶體 9
2.1.2 垂直型溝槽式閘極金氧半電晶體 9
2.1.3 接面位障蕭基二極體 10
2.2.2 未封裝的元件介紹 11
2.2.1 垂直型電容器 11
2.2.2 蕭基二極體 12
2.2.3 霍爾量測用的試片 13
2.3 總游離劑量的輻射照射測試 14
2.4 位移損傷的輻射照射測試 14
2.5 深能阱暫態能譜量測介紹 15
第三章總游離劑量輻射照射量測結果 27
3.1 市售的封裝功率元件量測 27
3.1.1 蕭基二極體量測 27
3.1.2 金氧半電晶體量測 29
3.1.3 不同方向照射的比較 32
3.2 未封裝的功率元件量測 33
3.2.1 電容量測 33
3.2.2 蕭基二極體量測 34
3.2.3 霍爾量測 34
3.3 退火修復機制 35
第四章位移損傷輻射照射量測結果 54
4.1 市售的封裝功率元件量測 54
4.1.1 蕭基二極體量測 54
4.1.2 金氧半電晶體量測 57
4.2 未封裝的功率元件量測 62
4.2.1 電容量測 62
4.2.2 蕭基二極體量測 63
4.2.3 霍爾量測 64
4.3 退火修復機制 65
4.4 深能阱暫態能譜量測 65
第五章結論與未來展望 87
參考文獻 88
[1] J. A. Cooper, M. R. Melloch, R. Singh, A. Agarwal, J. W. Palmour, “Status and prospects for SiC power MOSFETs,” IEEE Transactions on Electron Devices, vol. 49, no. 4, pp. 658–664, August 2002.

[2] B. J. Baliga, Silicon Carbide Power Devices, World Scientific Publishing Co. Pte. Ltd. 2005.

[3] C. Claeys, E. Simoen, Radiation Effects in Advanced Semiconductor Materials and Devices, Springer-Verlag Berlin Heidelberg, 2002.

[4] J.F. Ziegler, “Terrestrial Cosmic Rays”, IBM Journal of Research and Development, Vol. 40, no. 1, pp.19-39, January 1996.

[5] J. M. McGarrity, F. B. McLean, W.M. DeLancey, J. Palmour, C. Carter, J. Edmond, R.E. Oakley, “Silicon Carbide JFET Radiation Response,” IEEE Transactions on Nuclear Science, vol. 39, no. 6, pp. 1974-1981, December 1992.

[6] D.C. Sheridan, G. Chung, S. Clark, J.D. Cressler, “The Effects of High-Dose Gamma Irradiation on High-Voltage 4H-SiC Schottky Diodes and the SiC-SiO2 Interface,” IEEE Transactions on Nuclear Science, vol. 48, no. 6, pp. 2229-2232, December 2001.

[7] A. Akturk, J. M. McGarrity, S. Potbhare, N. Goldsman, “Radiation Effects in Commercial 1200 V 24 A Silicon Carbide Power MOSFETs,” IEEE Transactions on Nuclear Science, vol. 59, no. 6, pp. 3258-3264, December 2012.

[8] R.A. Wullaert, J.F. Kircher, R.E. Bowman, Effects of Radiation on Materials and Components, Reinhold Publishing Corp, 1964.

[9] G. Davydov, V. Luchinin, A. Nikiforov, “Effect of Irradiation with Fast Neutrons on Electrical Characteristics of Devices Based on CVD 4H-SiC Epitaxial Layers,” Semiconductors, vol. 37, no. 10, pp. 1229-1233, October 2003.
[10] K. Rashed, R. Wilkins, A. Akturk, R. C. Dwivedi, B. B. Gersey, “Terrestrial Neutron Induced Failure in Silicon Carbide Power MOSFETs,” IEEE Radiation Effects Data Workshop, July 2014.

[11] M. C. Tarplee, V. P. Madangarli, and Q. Zhang, “Design rules for field plate edge termination in SiC Schottky diodes,” IEEE Transactions on Electron Devices, vol. 48, no. 12, pp. 2659-2664, Dec. 2001.

[12] K. Ueno, T. Urushidani ; K. Hashimoto ; Y. Seki, “The guard-ring termination for the high-voltage SiC Schottky barrier diodes,” IEEE Electron Device Letters, vol. 16, no. 7, pp. 331-332, July 1995.

[13] T. Hiyoshi, T. Hori, J. Suda, T. Kimoto, “Simulation and experimental study on the junction termination structure for high-voltage 4H-SiC PiN diodes,” IEEE Transactions on Electron Devices, vol. 55, no. 8, pp. 1841–1846, July 2008.

[14] S. Harada, M. Kato, T. Kojima, K. Ariyoshi, Y. Tanaka, H. Okumura, “Determination of optimum structure of 4H-SiC Trench MOSFET,” 24th International Symposium on Power Semiconductor Devices and ICs, June 2012.

[15] A. Akturk, R. Wilkins, J. McGarrity, “Terrestrial Neutron Induced Failures in Commercial SiC Power MOSFETs at 27℃ and 150℃,” IEEE Radiation Effects Data Workshop, July 2005.

[16] D. Lang, “Deep‐ level transient spectroscopy: A new method to characterize traps in semiconductors,” Journal of Applied Physics, vol. 45, p. 3023, 1974.

[17] U. S. Qurashi, “study of defect characteristics in some technologically important compound semiconductors,” Quaid-i-Azam University, Islamabad, pp.56-57, Jane 1996.

[18] H. F. Li, S. Dimitrijev, D. Sweatman, and H. B. Harrison, “Effect of NO annealing conditions on electrical characteristics of n-type 4H-SiC MOS capacitors,” Journal of Electronic Materials, vol. 29, p. 1027-1032, January 2000
[19] J. Rozen, S. Dhar, M. E. Zvanut, J. R. Williams, L. C. Feldman, “Density of interface states, electron traps, and hole traps as a function
of the nitrogen density in SiO2 on SiC,” Journal of Applied Physics, vol. 105, no. 12, June 2009.

[20] J. R. Schwank, M. R. Shaneyfelt, D. M. Fleetwood, J. A. Felix, P. E.
Dodd, P. Paillet, V. Ferlet-Cavrois, “Radiation effects in MOS oxides,” IEEE Transactions on Nuclear Science, vol. 55, no. 4, pp. 1833-1853, August 2008.

[21] C. X. Zhang, E. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, S. Dhar, S. H. Ryu, X. Shen, S. T. Pantelides, “Effects of Bias on the Irradiation and Annealing Responses of 4H-SiC MOS Devices,” IEEE Transactions on Nuclear Science, vol. 58, no. 6, pp. 2925-2929, October 2011.

[22] E. X. Zhang, C. X. Zhang, D. M. Fleetwood, S. T. Pantelides, “Bias-temperature instabilities and radiation effects on SiC MOSFETs,” ECS Transactions, pp. 369-380, January 2011

[23] Z. Li, C. J. Li, E. Verbitskaya, V. Eremin “Temperature stimulated reverse annealing of neutron induced damage in high resistivity silicon detectors,” IEEE Nuclear Science Symposium and Medical Imaging Conference Record, October 1995

[24] H. M. Ayedh, M. Puzzanghera, B. G. Svensson, R. Nipoti “DLTS study on Al+ ion implanted and 1950°C annealed p-i-n 4H-SiC vertical diodes,” European Conference on Silicon Carbide & Related Materials, September 2016
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *