帳號:guest(3.142.201.175)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):來伯康
作者(外文):Lai, Bo-Kang
論文名稱(中文):氮化鋁鎵/氮化鎵射頻功率金氧半 高電子遷移率電晶體之元件製作與設計
論文名稱(外文):Design and Fabrication of RF Power AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):王郁琦
邱顯欽
劉嘉哲
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063507
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:52
中文關鍵詞:氮化鎵射頻功率高介電常數高電子遷移率電晶體
外文關鍵詞:GaNradio-freauencyhigh-kHEMT
相關次數:
  • 推薦推薦:0
  • 點閱點閱:399
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要於研究以高介電常數氧化物或氮化物應用於氮化鋁鎵/氮化鎵高電子遷移率電晶體之閘極絕緣層及鈍化層之元件製作及特性分析。在本研究中,氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體分別被製作於半絕緣碳化矽基板與高阻值矽基板上,並且各自使用氧化鋁/氮化矽、二氧化鉿/氮化矽的雙層結構作為鈍化層。
在比較本研究的所有元件後,當元件製作於半絕緣碳化矽基板上搭配二氧化鉿/氮化矽的雙層結構具有最佳的特性,在閘極線寬為2微米,閘極總長300微米的元件之汲極飽和電流密度為900mA/mm,最大轉導值為140 mS/mm。在小訊號表現上,截止頻率和最大震盪頻率分別為7.5和13.5 GHz。而在大訊號表現上,當汲極偏壓在30伏時,功率密度為2.8 W/mm,功率轉換效率為34.75%,線性增益為16.81 dB。
另外,在本研究中,我們亦製作了多指結構氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體。在偏壓30伏時,閘極總長為0.9厘米的元件具有1.59 W的總輸出功率。其功率密度為1.77 W/mm遠低於閘極總長300微米元件的2.8 W/mm,因為元件在高操作偏壓下產生的自熱效應造成輸出功率大為下降。
This thesis focuses on studying a high-k material applied to AlGaN/GaN high-electron-mobility-transistors (HEMTs) as gate insulator and the passivation layer for high frequency and RF power applications. Semi-insulating silicon carbide and high-resistivity silicon substrates were used in this study and these two type epitaxy structures were used to fabricate AlGaN/GaN MISHEMTs by Al2O3/SiNx and HfO2/SiNx dual layer passivation.
Compared with all types RF-MISHEMTs in this study. Excellent improvements are achieved for 2×300 μm2 AlGaN/GaN MISHEMT on semi-insulating SiC substrate with HfO2/SiNx dual layer passivation has a drain saturation current density (JDS,max) of 900 mA/mm and maximum transconductance (Gm,max) of 140 mS/mm. The fT and fMAX were 7.5 and 13.5 GHz, respectively. When biased at 30 V, the device has output power density of 2.8 W/mm with power added efficiency of 34.75%, and the linear gain was 16.81 dB.
In addition, multi-finger AlGaN/GaN MISHEMT was fabricated. The output power of 0.9 mm AlGaN/GaN HEMTs were 1.59 W when biased at 30 V. The power densities of the multi-finger devices were lower than 2.8 W/mm of 300 μm AlGaN/GaN MISHEMT. This implied that self-heating significantly degrades the power performance.
摘要 I
Abstract II
Table of Contents III
List of Figures V
List of Tables VIII
Chapter 1 Introduction 1
1-1 Background of Gallium nitride (GaN) 1
1-2 Microwave Application 2
1-3 Basic concepts of AlGaN/GaN heterojunction structure 4
1-3-1 Spontaneous and piezoelectric polarization effects 4
1-3-2 Two-dimensional electron gas (2DEG) mechanism 6
1-4 Research motivation 7
1-5 Thesis organization 8
Chapter 2 Fundamental Principles of High Frequency Measurement 9
2-1 Small-signal performance 9
2-1-1 Scattering parameters (S-parameters) 9
2-1-2 Figures of merit for small-signal performance 10
2-1-3 50 GHz S-parameter measurement system setup 12
2-2 Large-signal performance 13
2-2-1 Figures of merit for large-signal performance 13
2-2-2 High frequency power parameter measurement system setup 14
Chapter 3 Design and Fabrication of AlGaN/GaN MISHEMTs 15
3-1 Design of Experiment 15
3-2 Device layout design 16
3-3 Process flow of RF-MISHEMT 18
Chapter 4 Result and Discussion 25
4-1 AlGaN/GaN MISHEMTs with Al2O3 as Gate Dielectric 26
4-1-1 DC Characteristics 26
4-1-2 Small-signal performance 30
4-1-3 Large-signal performance 31
4-2 AlGaN/GaN MISHEMTs with HfO2 as Gate Dielectric 33
4-2-1 DC Characteristics 33
4-2-2 Small-signal performance 37
4-2-3 Large-signal performance 38
4-3 High output power AlGaN/GaN MISHEMTs 40
4-3-1 DC Characteristics 40
4-3-2 Small-signal performance 44
4-3-3 Large-signal performance 45
Chapter 5 Conclusions and Future work 48
5-1 Conclusions 48
5-2 Future work 50
References 51

[1] 張庭輔,黃智方,”氮化鎵功率元件簡介,” 電子資訊, 第二十卷第一期 (2014)
[2] Yole Développement, “SiC, Sapphire, GaN… : what is the business evolution of the non-Silicon based semiconductor industry ?,”
(https://www.slideshare.net/Yole_Developpement/sic-sapphire-gan-what-is-the-business-evolution-of-the-nonsilicon-based-semiconductor-industry-presentation-held-by-on-semicon-west-2017-by-pierric-gueguen-from-yole-dveloppement)
[3] 黃瑞乾, "微波功率元件應用含場效電極板之氮化鋁鎵/氮化鎵高電子遷移率電晶體之製作與線性度分析," 博士, 材料科學與工程學系, 國立交通大學, 新竹市, 2010.
[4] S. J. C. H. Theeuwen and J. H. Qureshi, "LDMOS Technology for RF Power Amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1755-1763, 2012.
[5] M. Meghdadi and A. Medi, "Design of 6–18-GHz High-Power Amplifier in GaAs pHEMT Technology," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 7, pp. 2353-2360, 2017.
[6] O. Ambacher et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, 1999.
[7] S. Hamady, "New concepts for normally-off power gallium nitride (GaN) high electron mobility transistor (HEMT)," Universite Toulouse III Paul Sabatier, 2014.
[8] Z. Tang, Z. Liu, and X. Zhu, "Progress of high-k dielectrics applicable to SONOS-type nonvolatile semiconductor memories," Transactions on Electrical and Electronic Materials, vol. 11, no. 4, pp. 155-165, 2010.
[9] Keysight Technologies, “Understanding the Fundamental Principles of Vector Network Analysis” (http://literature.cdn.keysight.com/litweb/pdf/5965-7707E.pdf)
[10] D. Zhong, Z. Zhang, and L. M. Peng, "Carbon nanotube radio-frequency electronics," Nanotechnology, vol. 28, no. 21, p. 212001, May 26 2017.
[11] 劉政志, "高頻氮化鋁鎵/氮化鎵與氮化鋁銦/氮化鎵高電子遷移率電晶體之製作與分析," 碩士, 電子工程研究所, 國立清華大學, 新竹市, 2012.
[12] 50GHz S-parameter Measurement System
(http://www.ndl.narl.org.tw/docs/devices/HF/003_1.pdf)
[13] High Frequency Power Parameter Measurement System
(http://www.ndl.narl.org.tw/docs/devices/HF/005_1.pdf)
[14] Y. S. Chiu et al., "Evaluation of AlGaN/GaN metal–oxide–semicondutor high-electron mobility transistors with plasma-enhanced atomic layer deposition HfO2/AlN date dielectric for RF power applications," Japanese Journal of Applied Physics, vol. 56, no. 9, p. 094101, 2017.
[15] H.-C. Chiu et al., "RF Performance of In Situ SiNx Gate Dielectric AlGaN/GaN MISHEMT on 6-in Silicon-on-Insulator Substrate," IEEE Transactions on Electron Devices, vol. 64, no. 10, pp. 4065-4070, 2017.
[16] H.-C. Chiu, C.-W. Yang, Y.-H. Lin, R.-M. Lin, L.-B. Chang, and K.-Y. Horng, "Device Characteristics of AlGaN/GaN MOS-HEMTs Using High-$k$ Praseodymium Oxide Layer," IEEE Transactions on Electron Devices, vol. 55, no. 11, pp. 3305-3309, 2008.
[17] B.-Y. Chou, W.-C. Hsu, C.-S. Lee, H.-Y. Liu, and C.-S. Ho, "Comparative studies of AlGaN/GaN MOS-HEMTs with stacked gate dielectrics by the mixed thin film growth method," Semiconductor Science and Technology, vol. 28, no. 7, p. 074005, 2013.
[18] C.-S. Lee et al., "Investigations on MgO-dielectric GaN/AlGaN/GaN MOS-HEMTs by using an ultrasonic spray pyrolysis deposition technique," Semiconductor Science and Technology, vol. 31, no. 5, p. 055012, 2016.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *