帳號:guest(3.145.155.58)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):彭育仁
作者(外文):Peng, Yu-Jen
論文名稱(中文):氮化鎵半導體之功率結合功率放大器之研製
論文名稱(外文):Design of GaN MMIC Power Amplifiers using Different Power Combining Approaches
指導教授(中文):徐碩鴻
指導教授(外文):Hsu, Shuo-Hung
口試委員(中文):劉怡君
孟慶宗
口試委員(外文):Liu, Yi-Chun
Meng, Chin-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063504
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:111
中文關鍵詞:功率放大器毫米波積體電路無線通訊氮化鎵
外文關鍵詞:power amplifierMMICwireless communicaitonGaN
相關次數:
  • 推薦推薦:0
  • 點閱點閱:514
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
氮化鎵材料在功率元件的應用上相較於矽材料有相當大的優勢材料,因為有著寬能隙和高臨界電場以及高熱導係數;且其高電子飽和速度和高電子移動速度電晶體( HEMT )的特性,使氮化鎵材料也能在高頻領域有良好表現。近幾年來,由於通訊頻段上升到毫米波,如何製作高頻功率放大器被廣泛的研究與討論。其中,氮化鎵認為是最有潛力的選項,因為更多的能量被空氣分子所吸收,所以功率放大器必須提供更高的輸出功率,但是增加輸出功率的同時產生了更多的熱,因此必須盡可能的提高效率,避免造成能源的浪費和影響電路與系統之運轉。
本論文將探討使用氮化鎵製程之射頻功率放大器,首先,在第一部介紹論文之研究動機以及氮化鎵元件之特性。在第二章節,討論功率放大器之基本概念以及重要設計考量。第三章至第六章分別討論三個功率放大器電路以及一個疊接組態測試電路之設計流程以及細節,包含了整體電路架構、電晶體大小、被動元件的設計以及模擬和量測結果。第一個電路為1~8 GHz寬頻功率放大器,採用功率強化分散式放大器架構,並選擇適當之電晶體減省面積。第二個電路為6 GHz之差動功率放大器,結合2路的傳輸線型變壓器完成輸出功率整合。第三個電路為整合WIPD之6 GHz差動功率放大器,利用WIPD之多層金屬完成輸入和輸出的匹配電路,達到減省GaN昂貴的面積以及高功率高效率的目的。
Gallium Nitride is excellent for power devices compared with silicon because of the wide bandgap, high critical electric field, and high thermal conductivity. Also, GaN has advantages in high frequency applications owing to the high electron saturation velocity under a large electric field. Recently, the millimeter wave (mmWave) frequency has been considered as a new paradigm in the next generation of wireless mobile communications. Therefore, many studies related to mmWave power amplifiers have been published based on the technology of GaN High Electron Mobility Transistors (HEMTs). Since the propagation distance of electromagnetic wave reduces with frequency, the RF power amplifiers have to deliver more power to reach the same distance at high operating frequencies. However, the higher power will generate higher heat and thus the efficiency is very important to avoid seriously degrading the characteristic of circuits and systems.
This thesis presents the research on RF power amplifiers using 0.25-m GaN on SiC technology. The first chapter includes motivation and the introduction of GaN material. Chapter II presents the basic concepts of power amplifier and some important design parameters. From chapter III to chapter VI, three PAs and one dual-gate transistor testkey are presented in details, including topology, transistor size, passive components, and the simulation and measurement results. The first circuit is a 1~8 GHz wideband PA, which employed a power enhanced distributed topology with optimization of proper transistor sizes to reduce the area. The second design is a 6-GHz differential PA with a 2-way TLT power combiner. At last, a 6-GHz differential PA uses WIN integrated passive device technology (WIPD) to implement the matching network, and combines GaN transistors to present a lower cost, high power, and high efficiency PA.
第1章 緒論 1
1.1 研究背景跟動機 1
1.2 氮化鎵元件之特性 3
1.3 論文架構 5
第2章 功率放大器之基本介紹 6
2.1 介紹 6
2.2 重要參數 7
2.2.1 輸出功率 7
2.2.2 效率 8
2.2.3 線性度 10
2.2.4 穩定度分析 13
2.3 負載線理論和最佳功率匹配 13
2.4 功率放大器之分類 16
2.4.1 A類功率放大器 17
2.4.2 B類功率放大器 18
2.4.3 AB類功率放大器 20
2.4.4 C類功率放大器 20
2.5 被動式電壓器 20
2.5.1 介紹 20
2.5.2 互耦型被動式變壓器 21
2.5.3 傳輸線型被動式變壓器 24
2.6 本章總結 28
第3章 氮化鎵之高功率寬頻功率放大器 29
3.1 介紹 29
3.2 高功率寬頻功率放大器設計 30
3.2.1 電路架構 30
3.2.2 電晶體選擇 31
3.2.3 分佈功率放大器之設計 34
A. 傳統之分佈放大器(Distributed amplifier, DA ) 34
B. 輸出匹配設計 (Output Network Design) 35
C. 輸入匹配設計 (Input Network Design) 39
D. 穩定度分析 (Stability Analysis) 40
3.3 電路模擬與量測 40
3.3.1 電路佈局 40
3.3.2 小訊號模擬與量測 41
3.3.3 大訊號模擬與量測 44
3.3.4 結論 48
第4章 氮化鎵之SUB-6GHZ功率放大器 50
4.1 介紹 50
4.2 SUB-6GHZ功率放大器設計 51
4.2.1 電路架構 51
4.2.2 電晶體選擇 53
4.2.3 被動式變壓器設計 54
A. 輸入以及級間變壓器 55
B. 輸出變壓器 58
4.3 電路模擬以及量測 62
4.3.1 電路佈局 62
4.3.2 小訊號量測結果 63
4.3.1 大訊號量測結果 66
4.4 本章總結 68
第5章 雙閘級堆疊式電晶體測試電路 70
5.1 介紹 70
5.2 電路設計 71
5.2.1 疊接組態之頻率響應 71
5.2.2 電晶體選擇及電路佈局 73
5.3 電路模擬與量測 75
5.3.1 電路模擬方式 75
5.3.2 模擬與量測結果 77
5.4 本章總結 83
第6章 氮化鎵SUB-6GHZ功率放大器結合IPD製程 84
6.1 SUB-6GHZ功率放大器結合IPD製程設計 84
6.1.1 電路架構 84
6.1.2 電晶體選擇 86
6.1.3 被動式變壓器設計 88
A. 輸入變壓器 88
B. 輸出變壓器 90
6.1.4 測試電路以及de-embedding 92
6.2 製程晶片異質整合之方法 94
6.3 模擬及量測結果 96
6.4 本章總結 104
第7章 結論與未來工作 106
參考文獻 108

[1] M. Agiwal, A. Roy and N. Saxena, "Next Generation 5G Wireless Networks: A Comprehensive Survey", IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1617-1655, 2016.
[2] D. Resca, J. Lonac, R. Cignani, A. Raffo, A. Santarelli, G. Vannini and F. Filicori, "Accurate EM-Based Modeling of Cascode FETs", IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 4, pp. 719-729, 2010.
[3] Jianjun Gao and G. Boeck, "Relationships between common source, common gate, and common drain FETs", IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 12, pp. 3825-3831, 2005.
[4] S. S. H. Hsu, C. Tsou, Y. Lian, and Y. Lin, “GaN-on-silicon devices and technologies for RF and microwave applications,” IEEE Intl. Symp. Radio-Frequency Integration Technology, Aug. 2016.
[5] Z. Popovic, "Amping Up the PA for 5G: Efficient GaN Power Amplifiers with Dynamic Supplies", IEEE Microwave Magazine, vol. 18, no. 3, pp. 137-149, 2017.
[6] Steve C. Cripps, RF Power Amplifiers For Wireless Communications. MA Norwood: Artech House, 2006.
[7] Long, J.R.; , "Monolithic transformers for silicon RF IC design," Solid-State Circuits, IEEE Journal of , vol.35, no.9, pp.1368-1382, Sept. 2000
[8] C. L. Ruthroff, “Some broadband transformers,” Proc. Ire, vol. 47, pp. 1337-1342, Aug. 1959.
[9] G. Guanella, “New method of impedance matching in radio-frequency circuits,” Brown-Boveri Rev., vol. 31, pp. 327-329, Sep. 1944.
[10] C. Campbell, C. Lee, V. Williams, M. Kao, H. Tserng, P. Saunier and T. Balisteri, "A Wideband Power Amplifier MMIC Utilizing GaN on SiC HEMT Technology", IEEE Journal of Solid-State Circuits, vol. 44, no. 10, pp. 2640-2647, 2009.
[11] M. Campovecchio, B. Le Bras, R. Hilal, M. Lajugie and J. Obregon, "Large signal design method of distributed power amplifiers applied to a 2–18-GHz GaAs chip exhibiting high power density performances", International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, vol. 6, no. 4, pp. 259-269, 1996.
[12] Dong-Wook Kim, "An Output Matching Technique for a GaN Distributed Power Amplifier MMIC Using Tapered Drain Shunt Capacitors", IEEE Microwave and Wireless Components Letters, vol. 25, no. 9, pp. 603-605, 2015.
[13] K. Narendra, H. Yan, B. Yarman and T. Latef, "Distributed power amplifier with novel integration technique of broadband impedance transformer using pseudomorphic HEMT and gallium nitride HEMT", IET Microwaves, Antennas & Propagation, vol. 11, no. 7, pp. 949-954, 2017.
[14] J. Kim, S. Lee, Y. Kwon and H. Park, "6–18 GHz, 8.1 W size-efficient GaN distributed amplifier MMIC", Electronics Letters, vol. 52, no. 8, pp. 622-624, 2016.
[15] X. Zhou, L. Roy and R. Amaya, "1 W, Highly Efficient, Ultra-Broadband Non-Uniform Distributed Power Amplifier in GaN", IEEE Microwave and Wireless Components Letters, vol. 23, no. 4, pp. 208-210, 2013.
[16] B. Green, V. Tilak, S. Lee, H. Kim, J. Smart, K. Webb, J. Shealy and L. Eastman, "High-power broad-band AlGaN/GaN HEMT MMICs on SiC substrates", IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2486-2493, 2001.
[17] B. Green, Sungjae Lee, K. Chu, K. Webb and L. Eastman, "High efficiency monolithic gallium nitride distributed amplifier", IEEE Microwave and Guided Wave Letters, vol. 10, no. 7, pp. 270-272, 2000.
[18] H. Wu, X. Liao, Q. Lin, Y. Hua, C. Wang, Y. Cheng, L. Hu, J. Lv, C. Liao, H. Fu and W. Tong, "A Compact Ultrabroadband Stacked Traveling-Wave GaN on Si Power Amplifier", IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 7, pp. 3306-3314, 2018.
[19] U. Schmid et al., “Ultra-wideband GaN MMIC chip set and high power amplifier module for multi-function defense AESA applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 8, pp. 3043–3051, Aug. 2013.
[20] D. Resca, J. Lonac, R. Cignani, A. Raffo, A. Santarelli, G. Vannini and F. Filicori, "Accurate EM-Based Modeling of Cascode FETs", IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 4, pp. 719-729, 2010.
[21] Jianjun Gao and G. Boeck, "Relationships between common source, common gate, and common drain FETs", IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 12, pp. 3825-3831, 2005.
[22] Shih-En Shih, W. Deal, D. Yamauchi, W. Sutton, Wen-Ben Luo, Yaochung Chen, I. Smorchkova, B. Heying, M. Wojtowicz and M. Siddiqui, "Design and Analysis of Ultra Wideband GaN Dual-Gate HEMT Low-Noise Amplifiers", IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3270-3277, 2009.
[23] Long, J. (2000), “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, 35(9), pp.1368-1382.
[24] Y. Okamoto, T. Nakayama, Y. Ando, A. Wakejima, K. Matsunaga, K. Ota and H. Miyamoto, "230 W C-band GaN-FET power amplifier", Electronics Letters, vol. 43, no. 17, p. 927, 2007.
[25] Victor Dupuy, Nathalie Deltimple, Eric Kerhervé, Jean-Philippe Plaze, Yves Mancuso, Patrick Garrec, Magali Dematos and Sofiane Aloui, "A compact wideband high power amplifier in GaN technology with 47% peak PAE," IEEE International Wireless Symposium, 2014, pp. 1-4.
(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *