帳號:guest(3.140.188.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭企泰
作者(外文):Cheng, Chi-Tai
論文名稱(中文):以硒化/退火製程製備銅銦鎵硒太陽能電池及探討不同參數優化太陽能電池材料的吸收係數
論文名稱(外文):Fabrication of CIGS solar cell by selenization and annealing process and explore some parameters for higher thin film solar cell material absorption
指導教授(中文):徐永珍
黃惠良
指導教授(外文):Hsu, Yung-Jane
Hwang, Huey-Liang
口試委員(中文):蕭錫鍊
翁恆義
口試委員(外文):Hsiao, Hsi-lien
Weng, hueng-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063503
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:88
中文關鍵詞:濺鍍硒化製程退火製程疊層太陽能電池
外文關鍵詞:SputteringSelenizationAnnealing processTandem solar cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:200
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究使用直流真空濺鍍系統成長CIG前驅層,再以固態硒源進行硒化製程,過程中可以藉由改變硒粉的量、升溫速率、溫度、持溫時間討論不同溫度曲線下CIGS薄膜的特性,接著調整溶液pH值來獲得最佳化的CdS緩衝層覆蓋在上方,接著將CdS薄膜與CdS/CIGS/Mo/Glass結構進行退火,改變不同的退火溫度:180、240、300℃,以XRD、拉曼光譜、穿透光譜與SEM分析,得到退火溫度300℃的CdS薄膜有最好的穿透率與強度,不過退火溫度300℃會對於CdS/CIGS接面產生負面的影響,造成短路電流下降。
我們以模擬軟體Complete EASE模擬a-si、CIGS、Perovskite三種元件的吸收係數曲線,發現吸收光譜曲線與元件光譜響應圖有相同的趨勢,接著運用Perovskite半透明結構與吸收光譜曲線的特性,結合a-si-H、CIGS元件形成疊層結構,得到Perovskite/ CIGS的疊層結構吸曲線優於Perovskite/ a-si的疊層結構,接著我們改變元件之間的透光層材料、吸收層能隙與厚度優化Perovskite/ CIGS疊層結構的吸收光譜曲線,最後以MO(800nm)/ CIGS(1500nm bandgap=1.5eV)/CdS(60nm)/PEDOT:PSS(50nm)/Perovskite(300nmbandgap=1.9 eV)/PCBM(100nm)疊層結構有著最接近光譜響應的吸收曲線結果。
In this study, a DC vacuum sputtering system was used to grow the CIG precursor layer, and then a solid-state selenium source was used for the selenization process. During the process, the CIGS film under different temperature curves could be discussed by changing the amount of selenium powder, heating rate, temperature and holding time. Characteristics, then adjust the pH of the solution to obtain an optimized CdS buffer layer overlying, and then anneal the CdS film to the CdS/CIGS/Mo/Glass structure to change the different annealing temperatures: 180, 240, 300 ° C, XRD, Raman spectroscopy, breakthrough spectroscopy and SEM analysis showed that the CdS film with an annealing temperature of 300 °C had the best penetration and strength, but the annealing temperature of 300 °C would have a negative impact on the CdS/CIGS junction,cause the short circuit current to drop.
We simulated the absorption coefficient curves of the three components a-si, CIGS and Perovskite with the simulation software Complete EASE. It was found that the absorption spectrum curve has the same trend as the spectral response diagram of the component, and then the characteristics of the Perovskite translucent structure and the absorption spectrum curve are combined with a-si-H and CIGS components form a tandem structure, and the tandem structure of Perovskite/CIGS is better than that of Perovskite/a-si. Then we change the absorption layer material and the absorption layer gap between the components. The absorption spectrum curve of the thickness-optimized Perovskite/CIGS tandem structure is finally MO (800 nm) / CIGS (1500 nm bandgap = 1.5 eV) / CdS (60 nm) / PEDOT: PSS (50 nm) / Perovskite (300 nm bandgap = 1.9 eV) / The PCBM (100 nm) stack structure has the absorption curve result closest to the spectral response.
摘 要 I
ABSTRACT II
致 謝 III
目 錄 IV
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池 2
1.2.1 太陽能電池的種類介紹 2
1.2.2太陽能電池基本原理 3
1.2.3太陽能電池的等效電路 4
1.2.4光伏基本參數 7
1.2.5太陽光譜 8
1.2.6空氣質量(air mass) 9
1.2.7吸收係數Absorption Coefficient(α) 10
1.2.8 研究動機 11
第二章 太陽電池 12
2.1 CIGS太陽能電池 12
2.1.1CIGS太陽能電池介紹 12
2.1.2 CuInSe2薄膜性質 12
2.1.3 銅銦鎵硒化合物的性質 13
2.2 CIGS太陽能電池結構 14
2.2.1 CIGS太陽能電池結構 14
2.3 CIGS各層薄膜特性 15
2.3.1鈉基板 15
2.3.2 Mo背電極 15
2.3.3 CIGS吸收層 15
2.3.4 CdS緩衝層 16
2.3.5 i-ZnO本質透光層 16
2.3.6 AZO導電層 16
2.3.7 Al電極 16
第三章 實驗與實驗儀器 17
3.1實驗儀器 17
3.1.1射頻真空磁控濺鍍系統 17
3.1.2直流真空濺鍍系統 18
3.1.3硒化爐管 19
3.2元件製備流程 20
3.2.1 鈉玻璃基板清潔步驟 21
3.2.2濺鍍製程 21
3.2.3 Mo金屬背電極濺鍍 22
3.2.4CIG前驅層濺鍍 22
3.2.5 硒化製程 22
3.2.6 CdS緩衝層製備 23
3.2.7 熱退火製程 24
3.2.8 i-ZnO透光層/ AZO導電層/Al電極製備 24
3.3量測儀器 25
3.3.1四點探針 25
3.3.2 掃描式電子顯微鏡(SEM) 26
3.3.3 拉曼光譜儀(Raman) 27
3.3.4 XRD 27
3.3.5 紫外光-可見光吸收光譜儀 27
3.3.6 太陽光模擬器(solar simulator) 27
第四章 實驗結果與討論 28
4.1 Mo金屬背電極 28
4.2 CIG前驅層 32
4.3 硒化製程 33
4.3.1 硒粉量對於薄膜的影響 33
4.3.2 升溫速率與二次項形成之關係 34
4.3.3 兩階段式硒化峰值溫度對於結構的影響 36
4.3.4 兩階段式硒化峰值溫度XRD圖分析 39
4.4 CdS緩衝層 41
4.5 退火製程 44
4.5.1 退火製程對於CdS薄膜的影響 44
4.5.2 退火後CdS/CIGS結構拉曼光譜分析 49
4.6 i-ZnO本質透光層 53
4.7 AZO導電層 56
4.8 CIGS太陽能電池元件的結果討論 59
第五章 疊層太陽電池介紹與模擬結果討論 62
5.1薄膜太陽能電池介紹 62
5.2.1 氫化非晶矽薄膜太陽電池 62
5.2.2鈣鈦礦太陽能電池 63
5.2疊層結構介紹 64
5.3 材料的光譜響應 65
5.4 模擬軟體 65
5.5 材料的吸收係數 66
5.6 太陽能電池疊層結構 69
5.7 疊層結構透光層材料 71
5.8 能隙與厚度對於吸收係數的影響 73
第六章 結論 83
研究結論 83
參考文獻 85
[1]P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, "Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%", physica status solidi (RRL)-Rapid Research Letters, 2016. 10(8): p. 583-586.
[2]http://www.rfcafe.com/references/electrical/ASTMG17303-Reference-Spectra.htm
[3] http://slideplayer.com/slide/5140511/
[4] https://zh.wikipedia.org/wiki/PN%E7%BB%93
[5] http://forum.eepw.com.cn/thread/200926/1
[6] https://en.wikipedia.org/wiki/Theory_of_solar_cells
[7]太陽電池 Solar Cells,黃惠良,蕭錫鍊,周明奇,林堅楊,江雨龍,曾百亨,李威儀,李世昌,林唯芳,五南出版社,2014
[8] https://www.zhihu.com/question/67377797/answer/255771864
[9] http://blog.sina.com.cn/s/blog_b8c1801b0102uxut.html
[10] http://140.138.177.194/yzunodlab/research/cigs.html
[11] 羅培哲,”有機金屬濺鍍製程運用於通銦鎵硒太陽能電池製備之研究”,國立清華大學電子工程研究論文,2016.
[12] J. C. Chang, C. C. Chuang, J. W. Guo, S. C. Hsu, H. R. Hsu, C. S. Wu, T. P. Hsieh, "An investigation of CuInGaSe2 thin film solar cells by using CuInGa precursor", Nanoscience and Nanotechnology Letters, 2016. 3(2): p. 200-203.
[13] D. Rudmann, A. F. D. Cunha, M. Kaelin, F. J. Haug, H. Zogg, and A. N. Tiwari, "Effects of Na on the growth of Cu(In,Ga)Se2 thin films and solar cells", MRS Online Proceedings, 2003. p. 763.
[14] B. J. Stanbery, "Copper indium selenides and related materials for photovoltaic devices", Critical reviews in solid state and materials sciences, 2002. 27(2): p. 73-117.
[15] Copper indium selenides and related materials for photovoltaic devices.Critical Reviews in Solid State&Material Science,27(2):p.73.
[16] H. Neumann and R. D. Tomlinson, Relation between electrical properties and composition in CuInSe2 single crystals Sol. Calls 28, 301 (1990)
[17]B.M.Bagol,V.K.Kapur,A.Minnick and C.Leidholm, Photovoltaic Specialists Conference,1993, Conference Record of the Twenty Third IEEE


[18] D. A. Ras, G. Kostorz, A. Romeo, D. Rudmann, and A. Tiwari, "Structural and chemical investigations of CBD-and PVD-CdS buffer layers and interfaces in Cu (In,Ga)Se2-based thin film solar cells", Thin Solid Films, 2005. 480: p. 118-123.
[19] K. Orgassa, et al. Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells, Thin Solid Films, 431 –432, p.387–391(2003)
[20] https://itw01.com/VGI8MEQ.html
[21] http://www.hk-phy.org/atomic_world/tem/tem02_c.html
[22] a collection of resources for the photovoltaic education
[23] Karthikeyan, S., A.E. Hill, and R.D. Pilkington, Nano-structured morphological features of pulsed direct current magnetron sputtered Mo films for photovoltaic applications. Thin Solid Films, 2011. 520(1): p. 266-271
[24] Huang, P.C., et al., The optimization of a Mo bilayer and its application in Cu(In, Ga)Se2 solar cells. Applied Surface Science, 2017. 425: p. 24-31
[25] H. John, et al. Sputtered molybdenum bilayer back contact for copper
indium diselenide-based polycrystalline thin-film solar cells. Thin
Solid Films. 260, p.26-31 (1995).
[26]Liu, W., et al., In-situ electrical resistance measurement of the selenization process in the CuInGa–Se system. Thin Solid Films, 2010. 519(1): p. 244-250
[27] 黃將才,”以兩段硒化製程製備銅銦鋁硒太陽能電池之研究”,國立清
華大學電子工程研究論文,2015.
[28] M.A. Contreras, et al, Preferred Orientation in Polycrystalline Cu(In,Ga)Se2 and Its Effect on Absorber Thin-Films and Devices, May 2000 NREL/CP-520-28379
[29] Oliva, A.I., et al., Formation of the band gap energy on CdS thin films growth by two different techniques. Thin Solid Films, 2001. 391(1): p. 28-35.
[30] Touafek, N. and R. Mahamdi, Excess defects at the CdS/CIGS interface solar cells. Vol. 11. 2014. 589-596.
[31]Hollingsworth, R.E. and J.R. Sites, Annealing temperature effects on CuInSe2/CdS solar cells. Solar Cells, 1986. 16: p. 457-477.
[32]Chen, D.S., et al., Effect of rapid thermal annealing on the compositional ratio and interface of Cu(In,Ga)Se2 solar cells by XPS. Applied Surface Science, 2013. 264: p. 459-463


[33]Cahen, D. and R. Noufi, Defect chemical explanation for the effect of air anneal on CdS/CuInSe2solar cell performance. Applied Physics Letters, 1989. 54(6): p. 558-560.
[34] 林怡婷,”Mo/CIAS介面的優化與Cu(In,Al)Se2太陽能電池製程之研究”,國立
清華大學電子工程研究論文,2014.
[35] Hwang, H.L., et al., Steps Towards Industrialization of Cu–III–VI2Thin‐Film Solar Cells:Linking Materials/Device Designs to Process Design For Non‐stoichiometric Photovoltaic Materials. Advanced Science, 2016. 3(10): p. 1500196.
[36] Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Pablo Docampo et al., Nature Communications, Vol 4, Article 2761 (2013).
[37] Dagamseh, A.M.K., Vet, B., Šutta, P. and Zeman, M., “Modelling and
Optimization of a-Si:H Solar Cells with Zno: Al Back Reflector,” Solar Energy
Materials and Solar Cells, Vol. 94, No. 12, pp. 2119-2123 (2010)
[38] S. D. Theiss et al. “Polysilicon Thin Film Transistors Fabricated at 100℃ on a Flexible Plastic Substrate,” IEEE Electron Device Meeting, p. 257, 1998.
[39] Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Samula D. Stranks et al., Science magazine, Vol 342, p341-344 (2013).
[40] 希瓦倫、史川克斯、史奈斯(民104年九月)。鈣鈦礦-太陽光電穿新衣。科學人雜誌,136,37-41.
[41] Qarony, W., et al., Efficient amorphous silicon solar cells: characterization, optimization, and optical loss analysis. Results in Physics, 2017. 7: p. 4287-4293.
[42] Liu, D., et al., Tailoring morphology and thickness of perovskite layer
for flexible perovskite solar cells on plastics: The role of CH3NH3I concentration.
Solar Energy, 2017. 147: p. 222-227.
[43] Singh, V., et al., Characterization of doped PEDOT: PSS and its influence on the
performance and degradation of organic solar cells. Vol. 29. 2014. 045020
[44] Peng, X., et al., Multi-layer strategy to enhance the grain size of CIGS thin film
fabricating by single quaternary CIGS target. Journal of Alloys and Compounds, 710:
p. 172-176. 2017.

[45] W. Liu, J.G. Tian, et al,In-situ electrical resistance measurement of the
selenization process in the CuInGa–Se system, Thin Solid Films 519 (2010):.p
244–250.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *