|
[1]P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, "Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%", physica status solidi (RRL)-Rapid Research Letters, 2016. 10(8): p. 583-586. [2]http://www.rfcafe.com/references/electrical/ASTMG17303-Reference-Spectra.htm [3] http://slideplayer.com/slide/5140511/ [4] https://zh.wikipedia.org/wiki/PN%E7%BB%93 [5] http://forum.eepw.com.cn/thread/200926/1 [6] https://en.wikipedia.org/wiki/Theory_of_solar_cells [7]太陽電池 Solar Cells,黃惠良,蕭錫鍊,周明奇,林堅楊,江雨龍,曾百亨,李威儀,李世昌,林唯芳,五南出版社,2014 [8] https://www.zhihu.com/question/67377797/answer/255771864 [9] http://blog.sina.com.cn/s/blog_b8c1801b0102uxut.html [10] http://140.138.177.194/yzunodlab/research/cigs.html [11] 羅培哲,”有機金屬濺鍍製程運用於通銦鎵硒太陽能電池製備之研究”,國立清華大學電子工程研究論文,2016. [12] J. C. Chang, C. C. Chuang, J. W. Guo, S. C. Hsu, H. R. Hsu, C. S. Wu, T. P. Hsieh, "An investigation of CuInGaSe2 thin film solar cells by using CuInGa precursor", Nanoscience and Nanotechnology Letters, 2016. 3(2): p. 200-203. [13] D. Rudmann, A. F. D. Cunha, M. Kaelin, F. J. Haug, H. Zogg, and A. N. Tiwari, "Effects of Na on the growth of Cu(In,Ga)Se2 thin films and solar cells", MRS Online Proceedings, 2003. p. 763. [14] B. J. Stanbery, "Copper indium selenides and related materials for photovoltaic devices", Critical reviews in solid state and materials sciences, 2002. 27(2): p. 73-117. [15] Copper indium selenides and related materials for photovoltaic devices.Critical Reviews in Solid State&Material Science,27(2):p.73. [16] H. Neumann and R. D. Tomlinson, Relation between electrical properties and composition in CuInSe2 single crystals Sol. Calls 28, 301 (1990) [17]B.M.Bagol,V.K.Kapur,A.Minnick and C.Leidholm, Photovoltaic Specialists Conference,1993, Conference Record of the Twenty Third IEEE
[18] D. A. Ras, G. Kostorz, A. Romeo, D. Rudmann, and A. Tiwari, "Structural and chemical investigations of CBD-and PVD-CdS buffer layers and interfaces in Cu (In,Ga)Se2-based thin film solar cells", Thin Solid Films, 2005. 480: p. 118-123. [19] K. Orgassa, et al. Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells, Thin Solid Films, 431 –432, p.387–391(2003) [20] https://itw01.com/VGI8MEQ.html [21] http://www.hk-phy.org/atomic_world/tem/tem02_c.html [22] a collection of resources for the photovoltaic education [23] Karthikeyan, S., A.E. Hill, and R.D. Pilkington, Nano-structured morphological features of pulsed direct current magnetron sputtered Mo films for photovoltaic applications. Thin Solid Films, 2011. 520(1): p. 266-271 [24] Huang, P.C., et al., The optimization of a Mo bilayer and its application in Cu(In, Ga)Se2 solar cells. Applied Surface Science, 2017. 425: p. 24-31 [25] H. John, et al. Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films. 260, p.26-31 (1995). [26]Liu, W., et al., In-situ electrical resistance measurement of the selenization process in the CuInGa–Se system. Thin Solid Films, 2010. 519(1): p. 244-250 [27] 黃將才,”以兩段硒化製程製備銅銦鋁硒太陽能電池之研究”,國立清 華大學電子工程研究論文,2015. [28] M.A. Contreras, et al, Preferred Orientation in Polycrystalline Cu(In,Ga)Se2 and Its Effect on Absorber Thin-Films and Devices, May 2000 NREL/CP-520-28379 [29] Oliva, A.I., et al., Formation of the band gap energy on CdS thin films growth by two different techniques. Thin Solid Films, 2001. 391(1): p. 28-35. [30] Touafek, N. and R. Mahamdi, Excess defects at the CdS/CIGS interface solar cells. Vol. 11. 2014. 589-596. [31]Hollingsworth, R.E. and J.R. Sites, Annealing temperature effects on CuInSe2/CdS solar cells. Solar Cells, 1986. 16: p. 457-477. [32]Chen, D.S., et al., Effect of rapid thermal annealing on the compositional ratio and interface of Cu(In,Ga)Se2 solar cells by XPS. Applied Surface Science, 2013. 264: p. 459-463
[33]Cahen, D. and R. Noufi, Defect chemical explanation for the effect of air anneal on CdS/CuInSe2solar cell performance. Applied Physics Letters, 1989. 54(6): p. 558-560. [34] 林怡婷,”Mo/CIAS介面的優化與Cu(In,Al)Se2太陽能電池製程之研究”,國立 清華大學電子工程研究論文,2014. [35] Hwang, H.L., et al., Steps Towards Industrialization of Cu–III–VI2Thin‐Film Solar Cells:Linking Materials/Device Designs to Process Design For Non‐stoichiometric Photovoltaic Materials. Advanced Science, 2016. 3(10): p. 1500196. [36] Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Pablo Docampo et al., Nature Communications, Vol 4, Article 2761 (2013). [37] Dagamseh, A.M.K., Vet, B., Šutta, P. and Zeman, M., “Modelling and Optimization of a-Si:H Solar Cells with Zno: Al Back Reflector,” Solar Energy Materials and Solar Cells, Vol. 94, No. 12, pp. 2119-2123 (2010) [38] S. D. Theiss et al. “Polysilicon Thin Film Transistors Fabricated at 100℃ on a Flexible Plastic Substrate,” IEEE Electron Device Meeting, p. 257, 1998. [39] Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Samula D. Stranks et al., Science magazine, Vol 342, p341-344 (2013). [40] 希瓦倫、史川克斯、史奈斯(民104年九月)。鈣鈦礦-太陽光電穿新衣。科學人雜誌,136,37-41. [41] Qarony, W., et al., Efficient amorphous silicon solar cells: characterization, optimization, and optical loss analysis. Results in Physics, 2017. 7: p. 4287-4293. [42] Liu, D., et al., Tailoring morphology and thickness of perovskite layer for flexible perovskite solar cells on plastics: The role of CH3NH3I concentration. Solar Energy, 2017. 147: p. 222-227. [43] Singh, V., et al., Characterization of doped PEDOT: PSS and its influence on the performance and degradation of organic solar cells. Vol. 29. 2014. 045020 [44] Peng, X., et al., Multi-layer strategy to enhance the grain size of CIGS thin film fabricating by single quaternary CIGS target. Journal of Alloys and Compounds, 710: p. 172-176. 2017.
[45] W. Liu, J.G. Tian, et al,In-situ electrical resistance measurement of the selenization process in the CuInGa–Se system, Thin Solid Films 519 (2010):.p 244–250.
|