帳號:guest(3.133.124.247)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):竇 征
作者(外文):Dou, Zheng.
論文名稱(中文):微型光生物反應器陣列對微生物光基因電路表達與生長率間關係的表徵
論文名稱(外文):Mini photo bioreactor array for characterization of interdependence of gene expression of bacterial optogenetic circuits and microbial growth
指導教授(中文):楊雅棠
指導教授(外文):Yang, Ya-Tang
口試委員(中文):荘嘉揚
藍忠昱
林玉俊
口試委員(外文):Juang, Jia-Yang
Lan, Chung-Yu
Lin, Yu-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:105063467
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:123
中文關鍵詞:生物反應器光基因CcaS-CcaR微生物生長
外文關鍵詞:bioreactoroptogeneticsCcaS-CcaRmicrobial growth
相關次數:
  • 推薦推薦:0
  • 點閱點閱:61
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
光可以取代化學試劑來調控細菌基因按需表達。但是目前,即便是如測量光基因電路表達水準這樣基本的檢測專案,現有儀器工具的操作仍然很麻煩且勞動密集。我們提出了一套微型光生物反應器陣列來監測細菌內光基因電路對光的響應。該陣列可以進行自動化即時活體並行監測與大腸桿菌中CcaS-CcaR光感測系統反應的測量。每個生物反應器均可測量光密度和螢光強度,並應用外部光幹預來控制基因的表達。該生物反應器陣列由CcaS-CcaR光感測系統進行驗證。微生物生長與光基因表達之間的相互依賴性在控制三種微生物生長影響因素(碳源,曝氧和抗生素濃度)的實驗中得到證實。在不同碳源與曝氧程度下的生長情況可以從資源配置平衡的角度來解釋。
Light can replace the chemical effector for programming on-demand gene expression in bacteria. Existing tools for optogenetic bacterial circuits remain cumbersome and labor intensive even for simple tasks, such as measuring growth-related gene expression. We present an array of min photobioreactors that monitors the response of optogenetic bacterial circuits to light. The array enables automated, in vivo parallelizable monitoring in real-time and enable the measurement of the host circuit interaction for a synthetic optogenetic circuit, CcaS-CcaR light sensing system in Escherichia coli. Each bioreactor measures the optical density and fluorescence and applies light-source intervention of the gene expression control. The bioreactor array is demonstrated on the CcaS–CcaR light sensing system in Escherichia coli. The interdependence between microbial growth and optogenetic gene expression is confirmed in a growth experiment with three effectors of microbial growth (carbon source, oxygenation, and antibiotic drug concentration). Growth under different carbon sources and oxygenation levels can be explained in the context of resource allocation trade off picture.
誌謝 III
中文摘要 IV
Abstract V
目錄 VI
一、緒論 1
1-1研究動機 1
1-2文獻回顧 3
1-2-1可逆光致變色色素與基因表達過程 3
1-2-2低成本生物反應器 7
二、材料及方法 9
2-1感光大腸桿菌樣本 9
2-2系統設置 12
2-2-1 系統結構概述 12
2-3-2機械結構 17
2-3-3硬體電路 19
2-3-4 軟體控制 25
2-4選件與系統校正 31
三、實驗結果 33
3-1實驗前準備步驟 33
3-2實驗步驟 34
3-3實驗結果 34
四、結論及討論 40
附錄 41
A-1 生物反應器與壓克力盒設計圖 41
A-2 生物反应器阵列程式码 47
參考文獻 116
[1] Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, Voigt CA. Synthetic biology: Engineering Escherichia coli to see light. Nature 2005;438:441–442.
[2] Möglich A, Moffat K. Structural basis for light- dependent signaling in the dimeric LOV domain of the photosensor YtvA. J. Mol Biol. 2007;373:112–126.
[3] Möglich A, Ayers RA, Moffat K. Design and signaling mechanism of light-regulated histidine kinases. J. Mol. Biol. 2009;385:1433–1444.
[4] Ohlendorf R, Vidavski RR, Eldar A, Moffat K, Möglich A. From dusk till dawn: one-plasmid systems for light-regulated gene expression. J. Mol. Biol. 2012;416:534–542.
[5] Tabor, J. J. et al., Multichromatic Control of Gene Expression in Escherichia coli, J. Mol. Biol. 2010; doi:10.1016/j.jmb.2010.10.038
[6] Schmidl SR, Sheth RU, Wu A, Tabor JJ. Refactoring and optimization of light-switchable Escherichia coli two-component systems. ACS. Synth. Biol. 2014;3:820–831.
[7] Ryu M-H, Gomelsky M. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications. ACS Synth. Biol. 2014;3:802–810.
[8] Shimizu-Sato S, Huq E, Tepperman JM, Quail, PH. (2002) A light-switchable gene promoter system. Nat. Biotechnol. 2002;20:1041–1044.
[9] Kennedy MJ, et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 2010;7:973–975.
[10] Rizzini L, et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 2011; 332:103–106.
[11] Olson EJ, Hartsough LA, Landry BP, Shroff R, Tabor JJ. (2014) Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals. Nat. Methods 2014;11:449–455.
[12] Gerhardt KP, et al. An open-hardware platform for optogenetics and photobiology. Sci. Rep. 6. 2016. doi: 10.1038/srep35363.
[13] Olson, E. J., Tzouanas, C. N., and Tabor, J. J. A photoconversion model for full spectral programming and multiplexing of optogenetic systems. Mol. Sys. Biol. 2017;13:926, doi: 10.15252/msb.20167456.
[14] Lee JM, Lee J, Kim T, Lee SK. (2013) Switchable gene expression in Escherichia coli using a miniaturized photobioreactor. PLoS One 2013;8:E52382.
[15] Davidson, E. A., Basu, A. S. Bayer, T. S. Programming microbes using pulse width modulation of optical signals. J. Mol. Biol. 2013;425:4161-4166.
[16] Morschett H, Schiprowski D, Müller C, Mertens K, Felden P, Meyer J, Wiechert W, Oldiges M. Design and validation of a parallelized micro-photobioreactor enabling phototrophic bioprocess development at elevated throughput. Biotechnol. Bioeng. 2017;114:122–131. doi:10.1002/bit.26051
[17] Heo J, Cho DH, Ramanan R, Oh HM, Kim HS. PhotoBiobox: a tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture. Biochem. Eng. J. 2015;103:193-197.
[18] Richter F, et al. Upgrading a microplate reader for photobiology and all-optical experiments. Photochem. Photobiol. Sci. 2015;14:270−279.
[19] Klumpp S, Zhang Z, Hwa T. Growth Rate-Dependent Global Effects on Gene Expression in Bacteria. Cell 2009;139:1366–75.
[20] Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. Interdependence of Cell Growth and Gene Expression: Origins 
and Consequences. Science 2010;330:1099–110.
[21]Weisse AY, Oyarzun DA, Danos V, Swain PS. Mechanistic links between cellular trade-offs, gene expression, and growth. Proc Nat Acad Sci USA.2015;112:E1038–E1047.
[22]Butler WL,Norris KH,Siegelman HW,Hendricks SB. Detection,assay,and preliminary purification of the pigment controlling photoresponsive development of plants[J]. Proc Natl Acad Sci USA, 1959,45( 12) : 1703-1708.
[23] Kehoe DM,Grossman AR. Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors[J]. Science,1996,273( 5280) : 1409-1412.
[24] Hughes J,Lamparter T,Hartmann E,Gartner W, Wilde A,Borner T. A prokaryotic phytochrome [J]. Photochem Photobiol,1997,386 ( 6626 ) : 663.
[25] Ng WO,Grossman AR,Bhaya D. Multiple light inputs control phototaxis in Synechocystis sp. strain PCC6803[J]. J Bacteriol,2003,185( 5) : 1599-
1607.
[26] Moon YJ. The role of cyanopterin in UV/blue light signal transduction of cyanobacterium Synechocystis sp. PCC 6803 phototaxis[J]. Plant Cell Physiol,2010,51( 6) : 969-980.
[27] Narikawa R,Suzuki F,Yoshihara S,Higashi S,Watanabe M,Ikeuchi M. Novel photosensory two-component system( PixA-NixB-NixC) involved in the regulation of positive and negative phototaxis of cyanobacterium Synechocystis sp. PCC 6803[J]. Plant Cell Physiol,2011,52( 12) : 2214-2224.
[28] Zhao KH,Haessner R,Cmiel E,Scheer H. Type Ⅰ reversible of phycoerythrobilin involves Z/Eiso-merization of alpha-84 phycoviolobilin chromophore[J]. Biochim et Biophys Acta,1995,1228: 235-243.
[29] Zhao KH,Scheer,H. Type Ⅰ and type Ⅱ reversible photochemistry of phycoerythrobilin alphasubunit from Mastigocladus laminosus both involve Z,E isomerization of phycoviolobilin chromophore and are controlled by sulfhydryls in apoprotein [J]. Biochim Biophys Acta-Bioenergetics,1995, 1228: 244-253.
[30] Ma Q,Hua HH,Chen Y,Liu BB,Krmer AL, Scheer H,Zhao KH,Zhou M. A rising tide of blue-absorbing biliprotein photoreceptors: Characteri-zation of seven such bilin-binding GAF domains in Nostoc sp. PCC7120 [J]. FEBS J, 2012,279( 21) : 4095-4108.
[31] Hübschmann T,Brner T,Hartmann E. Characterization of the Cph1 holo-phytochrome from Synechocystis sp. PCC 6803[J]. Eur J Biochem, 2001,268( 7) : 2055-2063
[32] Beale SI,Cornejo J. Biosynthesis of phycocyanobilin from exogenous labeled biliverdinin Cyani-dium caldarium[J]. Arch Biochem Biophys, 1983,227( 1) : 279-286.
[33] Beale SI,Cornejo J. Biosynthessis of phycobilins: Ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium[J]. J Biol Chem,1991,266: 22328-22332.
[34] Kim PW,Freer LH,Rockwell NC,Martin SS, Lagarias JC,Larsen DS. Femtosecond photodynamics of the red /green cyanobacteriochrome NpR6012g4 from Nostoc punctiforme reverse dynamics[J]. Biochemistry,2012a,51 ( 2) : 619 - 630.
[35] Rockwell NC,Martin SS,Feoktistova K,Lagarias JC. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes [J]. Proc Natl Acad Sci USA,2011,108 ( 29 ) : 11854 - 11859.
[36] Rockwell NC,Njuguna SL,Roberts L,Castillo E, Parson VL,Dwojak S,Lagarias JC,Spiller SC. A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus[J]. Biochemistry,2008,47 ( 27) : 7304-7316
[37] Yang XJ,Emina AS,Jane K,Moffat K. Crystal structure of the chromophore binding domain of an unusual bacteriophytochrome,RpBphP3,reveals residues that modulate photoconversion [J]. PANS,2007,104( 7) : 12571-12576.
[38] Van Thor JJ,Mackeen M,Kuprov I,Dwek RA, Wormald MR. Chromophore structure in the photocycle of the cyanobacterial phytochrome Cph1 [J]. Biophys J,2006,91( 5) : 1811-1822.
[39] HIROSE, Yuu, et al. Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein. Proceedings of the National Academy of Sciences, 2008.
[40] Stevenson, K. F., McVey, A. F., Clark, I. B. N., Swain, P. S., Pilizota, T., (2016) General calibration of microbial growth in microplate readers. Sci. Rep. 6, 38828; doi: 10.1038/srep38828.
[41] Klöckner W., and Büchs J. (2012) Advances in shaking technologies. Trend in Biotechnology, 30, 307-314, doi:10.1016/j.tibtech.2012.03.001
[42] Zaslaver, A. et al., (2009) Invariant Distribution of Promoter Activities in Escherichia coli. PLOS Comput. Biol. 5, e1000545 (2009).doi:10.1016/S0022-2836(02)00994-4.
[43] Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2000 generations. Am. Nat. 138, 1315–1341 (1991).
[44] Chen, M., Metiri, Taulant, Hollanda, T., Basu, A. S. (2012) Optical microplates for highthroughput screening of photosynthesis in lipid-producing algae. Lab Chip, 12, 3870– 3874 DOI: 10.1039/c2lc40478h.
[45] Takahashi, C. N., Miller, A. W., Ekness, F., Dunham, M. J., Klavins, E. A low cost, customizable turbidostat for use in synthetic circuit characterization. ACS Synth. Biol. 2014;4:32-38.
[46] Toprak, E., Veres, A., Yildiz, S., Pedraza, J. M., Chait, R., Paulsson, J., Kishony, R. (2013) Building a morbidostat: an automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition. Nat. Protoc. 8, 555−567.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *