帳號:guest(18.216.26.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉晉亨
作者(外文):Liu, Chin-Heng
論文名稱(中文):利用冗餘移除與全面性權重分配的方法來識別臨界值函數的研究
論文名稱(外文):Threshold Function Identification by Redundancy Removal and Comprehensive Weight Assignments
指導教授(中文):王俊堯
指導教授(外文):Wang, Chun-Yao
口試委員(中文):黃俊達
溫宏斌
口試委員(外文):Huang, Juinn-Dar
Wen, Hung-Pin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系所
學號:105062566
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:31
中文關鍵詞:臨界值邏輯閘臨界值函數辨別冗餘移除權重分配
外文關鍵詞:Linear threshold logic gateThreshold function identificationRedundancy removalWeight assignments
相關次數:
  • 推薦推薦:0
  • 點閱點閱:638
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在臨界值邏輯的理論中,臨界值函數的辨別方法是一個基本卻很重要的工作,它可以決定一個布林函數是否可以被單一臨界值邏輯閘呈現。在此理論中,藉由建立非冗餘的不等式系統與全面性權重分配,我們提出一個更有效率與效能的臨界值邏輯函數辨別演算法。這是第一個可以辨別所有8輸入臨界值函數的非整數線性規劃的演算法。從實驗結果中,我們顯示出提倡的方法比所有現存的非整數線性規劃方法更加有效,以及提倡的方法產生出的臨界值邏輯閘有將近100%的機率會是最佳的。對於9到15輸入臨界值函數,提倡的方法也可以在合理的執行時間內,辨別出所有由隨機產生的100,000個臨界值函數。
The identification of threshold function, which determines whether a Boolean function can be represented by an LTG or not, is a fundamental but important task in the theories of threshold logic. In this thesis, we propose a more efficient and effective algorithm of threshold function identification by constructing the system of irredundant inequalities and adjusting the weight assignment comprehensively. This is the first non-ILP-based approach that is able to identify all the 8-input threshold functions. The experimental results demonstrated that the proposed approach is more effective than all the existing non-ILP-based approaches and the LTGs obtained by the proposed approach are optimal for near 100\% cases. For threshold functions with 9 to 15 inputs, the proposed approach can identify 100,000 randomly generated threshold functions as well in a reasonable CPU time.
中文摘要 i
Abstract ii
Acknowledgement iii
Contents iv
List of Tables vi
List of Figures vii
1 Introduction 1
2 Preliminaries 5
2.1 Linear Threshold Gate . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Threshold Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Irredundant Sum-of-Products . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Modified Chow’s Parameter . . . . . . . . . . . . . . . . . . . . . . . 6
3 Algorithm 8
3.1 The Review of the State-of-the-art . . . . . . . . . . . . . . . . . . . 8
3.2 Generation of the System of Irredundant Inequalities . . . . . . . . . 11
3.2.1 Redundant Weighted Summation Removal . . . . . . . . . . . 12
3.2.2 Redundant Inequality Removal . . . . . . . . . . . . . . . . . 12
3.3 Weight Assignment Procedure . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 The Review of the State-of-the-art [15] . . . . . . . . . . . . . 14
3.3.2 Proposed Weight Assignment Method . . . . . . . . . . . . . . 17
3.4 Threshold Value Computation . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Overall Flowchart of TF Identification Algorithm . . . . . . . . . . . 21
4 Experimental Results 23
4.1 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Conclusion 28
[1] C. Augustine, G. Panagopoulos, B. Behin-Aein, S. Srinivasan, A. Sarkar, and
K. Roy, “Low-power Functionality Enhanced Computation Architecture Using
Spin-based Devices,” in Proc. Int. Symp. on Nanoscale Architecture, 2011, pp.
129-136.
[2] M. J. Avedillo, J. M. Quintana, H. Pettenghi, P. M. Kelly, and C. J. Thompson,
“Multi-Threshold Threshold Logic Circuit Design using Resonant Tunnelling
Devices,” Electron. Lett., pp. 1502-1504, vol. 39, 2003.
[3] I. A. Basheerg, and M. Hajmeer, “Artificial Neural Networks: Fundamentals,
Computing, Design, and Application,” Journal of Microbiological Methods, pp.
3-31, 2000.
[4] V. Beiu, J. M. Quintana, and M. J. Avedillo, “VLSI Implementations of Threshold
Logic-A Comprehensive Survey,” IEEE Trans. on Neural Networks, vol. 14,
pp. 1217-1243, 2003.
[5] Y.-C. Chen, R. Wang, and Y.-P. Chang, “Fast Synthesis of Threshold Logic
Networks with Optimization,” in Proc. Asia and South Pacific Design Automation
Conf., 2016, pp. 486-491.
[6] D. Goldharber-Gordon, M. S. Montemerlo, J. C. Love, G. J. Opiteck, and J.
C. Ellenbogen, “Overview of Nanoelectronic Devices,” in Proc. IEEE, 1997, pp.
521-540.
[7] T. Gowda, S. Vrudhula and G. Konjevod, “A Non-ILP based Threshold Logic
Synthesis Methodology,” in Proc. Int’l Workshop on Logic & Synthesis, 2007.
[8] T. Gowda, S. Vrudhula, N. Kulkarni, and K. Berezowski, “Identification of
Threshold Functions and Synthesis of Threshold Networks,” IEEE Trans. on
Computer-Aided Designs, vol. 30, no. 5, pp. 665-677, 2011.
[9] G. B. Huang, Q. Y. Zhu, K. Z. Mao, C. K. Siew, P. Saratchandran, and N. Sundararajan,
“Can Threshold Networks Be Trained Directly?,” IEEE Trans. Circuits
Syst. II, Exp. Briefs, 53(3), pp. 187-191, 2006.
[10] P.-Y. Kuo, C.-Y. Wang, and C.-Y. Huang, “On Rewiring and Simplification for
Canonicity in Threshold Logic Circuits,” in Proc. ICCAD, pp. 396-403, 2011.
[11] Y.-A. Lai, C.-C. Lin, C.-C. Wu, Y.-C. Chen, and C.-Y. Wang, “Efficient Synthesis
of Approximate Threshold Logic Circuits with an Error Rate Guarantee,”
in Proc. DATE, 2018.
[12] C.-C. Lin, C.-Y. Wang, Y.-C. Chen, and C.-Y. Huang, “Rewiring for Threshold
Logic Circuit Minimization,” in Proc. DATE, 2014, pp. 1-6.
[13] C.-C. Lin, C.-W. Huang, C.-Y. Wang, and Y.-C. Chen, “In&Out: Restructuring
for Threshold Logic Network Optimization,” in Proc. ISQED, 2017, pp. 413-
418.
[14] S. Muroga,“Threshold Logic and its Applications,” New York, NY: John Wiley,
1971.
[15] A. Neutzling, M. G. A. Martins, V. Callegaro, and A. I Reis, R. P. Ribas,
“A Simple and Effective Heuristic Method for Threshold Logic Identification,”
IEEE Trans. on Computer-Aided Design, vol. PP, Issue. 99, 2017.
[16] M. Perkowski, and A. Mishchenko, “Logic Synthesis for Regular Fabric Realized
in Quantum dot Cellular Automata,” Journal of Multiple-Valued Logic and Soft
Comput., pp. 768-773, 2004.
[17] V. Saripalli, L. Liu, S. Datta, and V. Narayanan, “Energy-delay Performance
of Nanoscale Transistors Exhibiting Single Electron Behavior and Associated
Logic Circuits,” Journal of Low Power Electronics, vol. 6, pp. 415-428, 2010.
[18] C.-K. Tsai, C.-Y. Wang, C.-Y. Huang, and Y.-C. Chen, “Sensitization Criterion
for Threshold Logic Circuits and its Application,” in Proc. ICCAD, pp. 226-233,
Nov. 2013.
[19] J. Schlachter, V.Camus, and C. Enz, “Near/Sub-Threshold Circuits and Approximate
Computing: The Perfect Combination for Ultra-Low-Power Systems,”
in Proc. ISVLSI, 2015, pp. 476-480.
[20] R. O. Winder, “Single Stage Threshold Logic,” Switching Circuit Theory and
Logical Design, pp. 321-332, 1961.
[21] R. O. Winder, “Threshold Logic,” Ph.D. dissertation, Princeton University,
Princeton, NJ, 1962.
[22] R. O. Winder, “Enumeration of Seven-Argument Threshold Functions,” IEEE
Trans. on Electronic Computers, pp. 315-325, 1965.
[23] R. Zhang, P. Gupta, L. Zhong, and N. K. Jha, “Threshold Network Synthesis
and Optimization and Its Application to Nanotechnologies,” IEEE Trans.
Computer-Aided Design, vol. 24, no. 1, pp.107-118, 2005.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *