帳號:guest(3.143.237.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇維鈞
作者(外文):Su, Wei-Chun
論文名稱(中文):基於深度學習運用加權激活函數改進軟體錯誤預測
論文名稱(外文):Using Weighted Activation Function to Improve Software Defect Prediction Based on Deep Learning
指導教授(中文):黃慶育
指導教授(外文):Huang, Chin-Yu
口試委員(中文):蘇銓清
林振緯
林其誼
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系所
學號:105062565
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:75
中文關鍵詞:軟體工程軟體品質保證深度學習即時錯誤預測深度置信網路加權組合
外文關鍵詞:Software EngineeringSoftware Quality AssuranceDeep LearningJust-In-Time Defect PredictionDeep Belief NetworkWeighted Combination
相關次數:
  • 推薦推薦:0
  • 點閱點閱:548
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
軟體品質保證在軟體開發中期中佔有很重要的部分,而錯誤預測是提升軟體品質保證的一個好方法,他常被用來找出有錯誤傾向的程式以幫助使用者分配品質保證的資源(如測試及除錯的資源),精準的錯誤預測系統可以帶來可觀的利益,然而現今的系統仍有許多地方有待改進,如使用不同層級的特徵資料或使用當今先進的技術來建立預測模型。
錯誤預測可以根據分析資料的密度與分類器分成許多種類,其中分析資料的密度決定了使用者需要花多少資源去檢查被預測為有錯誤的資料,即時錯誤預測是使用修改層級的特徵資料來建立預測模型,此種方法可以幫助品質保證工程師更精確地找出錯誤,他們可以藉由查找特徵資料中的修改紀錄來檢查程式碼,此種方法可以有效地減少需要檢查的範圍。近來深度學習可謂電腦科學中新興的研究領域,他藉由強大的資料分類能力解決的許多領域各式各樣的問題,此外有許多研究指出深度學習也可以適當地應用於軟體工程相關的資料集,使用深度學習建立錯誤預測模型或許能有效地提升預測的表現。
在本篇論文中,我們提出了激活函數的加權組合來改善錯誤預測模型,當有許多種模型或分類器的時候,加權組合常被用來結合各個種類的特性並且創造出一個新的模型或分類器,他們結合了不同激活函數的優點來建立深度學習中的神經網路。深度置信網路被稱為最適合軟體工程資料集的神經網路,我們透過二元和三元加權組合六種最先進的激活函數,建立了41種即時錯誤預測模型期望能改進預測的表現,我們使用了六個大型開源專案來評估我們所提出的方法,一共包含了227,417筆特徵資料,而實驗結果顯示二元的激活函數加權組合表現結果優於單一的激活函數。
為了找出錯誤預測模型中最關鍵的參數,我們利用一次一因子方法進行敏感度分析,結果顯示微調丟棄數和有限波茲曼狀態機的世代數量是精準度和時間的關鍵參數,如果精準度被視為最重要的結果,則應該優先調整微調丟棄數、相對地如果時間為優先考量,則應該先調整有限波茲曼狀態機的世代數量。
Software quality assurance is an essential part of the Software Development Life Cycle (SDLC). Defect prediction is a prominent approach to enhance software quality assurance. It is a common technique for identifying defect-prone programs, which help the practitioners allocate their quality assurance efforts (e.g., testing and debugging). An accurate prediction may bring significant benefits. However, there is still space for improvements by applying different levels of instances or using some state-of-the-art techniques to construct the prediction models.
There are several kinds of defect predictions which vary from granularity to classifier during the SDLC. The prediction granularity determines the efforts that practitioners take to inspect the buggy instances. Just-In-Time defect prediction, which uses change-level instances to train the prediction model, helps the quality assurance engineers discover the defects precisely. They can inspect the code by reading the change log reported in the instances, which would minimize the range of the defective area. Recently, deep learning is a promising research domain in computer science. It can solve or improve versatile problems in a wide range of fields by its powerful ability for data classification. Besides, there are several researches showing that datasets related to software engineering can be applied to deep learning appropriately. It may improve the performance to construct defect prediction models based on deep learning.
In this study, we propose several kinds of weighted combinations of activation functions to improve the defect prediction models, comprising of arithmetic, geometric, harmonic, contra-harmonic, and cubic weighted combinations. When there are several kinds of models or classifiers, weighted combinations are always applied to combine the strengths and create a new model or classifier. They can combine the advantage of different activation functions to train the neural network in deep learning. Deep belief network is claimed to be the most suitable neural network for software engineering datasets. We construct 41 kinds of Just-In-Time defect prediction models by deep belief networks built with dual and ternate combination of six kinds of state-of-the-art activation functions to improve the predictions. We use six large open source projects, including 227,417 instances, to evaluate the performance of our approach. The experimental result shows that dual weighted combinations of activation function perform better than single activation function.
In order to find the most critical parameter in the defect prediction model, in this study we plan to use the One-factor-at-a-time approach to perform sensitivity analysis. It can be figured out that fine-tuning dropout and number of RBM epochs are the critical parameters for accuracy and time. If accuracy is identified as the first priority, fine-tuning dropout should be set in advance. Number of RBM epochs should be set first if time takes precedence.
Abstract i
中文摘要 iii
List of Tables vii
List of Figures viii
List of Symbols ix
Acronyms and Abbreviations ix
Notation x
Chapter 1 Introduction 1
Chapter 2 Background and Related Work 5
2.1 Defect Prediction 5
2.2 Deep Learning Techniques 8
2.3 Activation Function 11
2.3.1 Saturated Activation Function 12
2.3.1.1 Sigmoid 12
2.3.1.2 TanH 14
2.3.2 Unsaturated Activation Function 15
2.3.2.1 ReLU 15
2.3.2.2 Leaky ReLU 17
2.3.2.3 ELU 18
2.3.2.4 Softplus 19
Chapter 3 Incorporation of Weighted Combination into Defect Prediction in Deep Learning 21
3.1 Weighted Activation Function 21
3.2 Ingredients of Deep Belief Network 25
3.2.1 Applied Features 25
3.2.2 Preprocessing 27
3.3 Architecture of Deep Belief Network 28
3.4 Methodology 31
Chapter 4 Experimental Results and Analysis 36
4.1 Datasets 36
4.2 Evaluation Metrics 38
4.3 Defect Prediction Result 40
4.4 More Observation and Discussion 48
Chapter 5 Sensitivity Analysis 52
5.1 One-factor-at-a-time (OFAT) method 52
5.2 The most sensitive parameter 53
Chapter 6 Discussion 56
6.1 RQ1: Could Deep Learning Technique Be Applied to Defect Prediction? 56
6.2 RQ2: How Is the Effect of Weighted Combination On Defect Prediction? 56
6.3 RQ3: What is the best kind of the weighted combination for defect prediction? 58
6.4 RQ4: What Is the Major Factor of Defect Prediction Based On Deep Learning? 58
6.5 Threat to Validity 58
Chapter 7 Conclusion and Future Work 62

[1] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically Enhanced Software Traceability Using Deep Learning Techniques.” Proceeding of the 39th International Conference on Software Engineering (ICSE), Buenos Aires, Argentina, May 2017, doi:10.1109/icse.2017.9.
[2] A. C. Florea, J. Anvik, and R. Andonie, “Parallel Implementation of a Bug Report Assignment Recommender Using Deep Learning.” Proceeding of the 26th International Conference on Artificial Neural Network and Machine Learning (ICANN), Alghero, Sardinia, Italy, Sep. 2017, pp. 64–71, doi:10.1007/978-3-319-68612-7_8.
[3] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep Learning for Just-in-Time Defect Prediction.” Proceeding of 2015 International Conference on Software Quality, Reliability, and Security (QRS), Vancouver, BC, Canada, Aug. 2015, doi:10.1109/qrs.2015.14.
[4] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A Systematic Literature Review on Fault Prediction Performance in Software Engineering.” IEEE Transaction on Software Engineering, Vol. 38, No. 6, pp. 1276–1304, Oct. 2012, doi:10.1109/tse.2011.103.
[5] S. Hosseini, B. Turhan, and D. Gunarathna, “A Systematic Literature Review and Meta-Analysis on Cross Project Defect Prediction.” IEEE Transaction on Software Engineering, pp. 1–1, Nov. 2017, doi:10.1109/tse.2017.2770124.
[6] G. Calikli, A. Tosun, A. Bener, and M. Celik, “The Effect of Granularity Level On Software Defect Prediction View Document.” Proceedings of the 24th International Symposium on Computer and Information Sciences, Guzelyurt, Cyprus, Sep. 2009, doi:10.1109/ISCIS.2009.5291866.
[7] T.P. Pushphavathi, “An Approach for Software Defect Prediction by Combined Soft Computing.” Proceedings of 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, Aug. 2017, doi: 10.1109/ICECDS.2017.8390007.
[8] X. Yang and W. Wen, “Ridge and Lasso Regression Models for Cross-Version Defect Prediction.” IEEE Transactions on Reliability, Jun. 2018, doi: 10.1109/TR.2018.2847353. (pagination is not decided)
[9] H. Wei, C. Shan, C. Hu, H. Sun, and M. Lei, “Software Defect Distribution Prediction Model Based On NPE-SVM.” China Communications, Vol. 15, No. 5, pp. 173-182, May 2018, doi: 10.1109/CC.2018.8387996.
[10] Y. Yang, J. Yang, and H. Qian, “Defect Prediction by Using Cluster Ensembles.” Proceedings of the 10th International Conference on Advanced Computational Intelligence (ICACI), Xiamen, China, Mar. 2018, pp. 631-636, doi: 10.1109/ICACI.2018.8377533.
[11] Z. Li, X. Y. Jing, and X. Zhu, “Progress On Approaches to Software Defect Prediction.” IET Software, Vol. 12, No. 3, pp. 161-175, Jun. 2018, doi: 10.1049/iet-sen.2017.0148.
[12] Q. Song, Y. Guo, and M. Shepperd, “A Comprehensive Investigation of the Role of Imbalanced Learning for Software Defect Prediction.” IEEE Transactions on Software Engineering, May 2018, doi: 10.1109/TSE.2018.2836442. (pagination is not decided)
[13] Z. Xu, J. Liu, X. Luo, and T. Zhang, “Cross-Version Defect Prediction Via Hybrid Active Learning with Kernel Principal Component Analysis.” Proceedings of the 25th International Conference on Software Analysis, Evolution and Reengineering (SANER), Campobasso, Italy, Mar. 2018, doi: 10.1109/SANER.2018.8330210.
[14] T.J. McCabe, “A Complexity Measure.” IEEE Transaction on Software Engineering, Vol. SE-2, No. 4, pp. 308–320, Dec. 1976, doi:10.1109/tse.1976.233837.
[15] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object Oriented Design.” IEEE Transaction on Software Engineering, Vol. 20, No. 6, pp. 476–493, Jun. 1994, doi:10.1109/32.295895.
[16] K.O. Elish and M.O. Elish, “Predicting Defect-Prone Software Modules Using Support Vector Machines.” Journal of Systems and Software, Vol. 81, No. 5, pp. 649–660, May 2008, doi:10.1016/j.jss.2007.07.040.
[17] T. Wang and W.H. Li “Naive Bayes Software Defect Prediction Model.” Proceeding of International Conference on Computational Intelligence and Software Engineering (CiSE), Wuhan, China, Dec. 2010, pp. 1-4, doi:10.1109/cise.2010.5677057.
[18] X.Y. Jing, S. Ying, Z.W. Zhang, S.S. Wu, and J. Liu, “Dictionary Learning Based Software Defect Prediction.” Proceeding of the 36th International Conference on Software Engineering (ICSE), Hyderabad, India, May 2014, pp. 414-423, doi:10.1145/2568225.2568320.
[19] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi, “A Large-Scale Empirical Study of Just-In-Time Quality Assurance.” IEEE Transaction on Software Engineering, Vol. 39, No. 6, pp. 757–773, Nov. 2012, doi:10.1109/tse.2012.70.
[20] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N. Ubayashi, “An Empirical Study of Just-In-Time Defect Prediction Using Cross-Project Models.” Proceeding of the 11th Working Conference on Mining Software Repositories (MSR), Hyderabad, India, May 2014, pp. 172-181, doi:10.1145/2597073.2597075.
[21] A. Mockus and D. M. Weiss, “Predicting Risk of Software Changes.” Bell Labs Technical Journal, Vol. 5, No. 2, pp. 169–180, Apr. 2000, doi:10.1002/bltj.2229.
[22] S. Kim, E. J. Whitehead, Jr., and Y. Zhang, “Classifying Software Changes: Clean or Buggy?” IEEE Transaction on Software Engineering, Vol. 34, No. 2, pp. 181–196, Mar. 2008, doi:10.1109/tse.2007.70773.
[23] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A Unified Embedding fr Face Recognition and Clustering.” Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, Jun. 2015, pp. 815-823, doi:10.1109/CVPR.2015.7298682.
[24] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P.H. S. Torr, “Conditional Random Fields as Recurrent Neural Networks.” Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, Dec. 2015, pp. 1529-1537, doi:10.1109/ICCV.2015.179.
[25] C. Dong, C. C. Loy, K. He, and X. Tang, “Image Super-Resolution Using Deep Convolutional Networks.” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 38, No. 2, pp. 295-307, Jun. 2015, doi:10.1109/TPAMI.2015.2439281.
[26] G. Carneiro, J. C. Nascimento, and A. Freitas, “The Segmentation of the Left Ventricle of the Heart from Ultrasound Data Using Deep Learning Architectures and Derivative-Based Search Methods.” IEEE Transactions on Image Processing, Vol. 21, No. 3, pp. 968-982, Sep. 2011, doi:10.1109/TIP.2011.2169273.
[27] G. Tur, L. Deng, D. H. Tür, and X. He, “Towards Deeper Understanding: Deep Convex Networks for Semantic Utterance Classification.” Proceeding of 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, Mar. 2012, pp. 5045-5048, doi:10.1109/ICASSP.2012.6289054.
[28] S. Xie and Z. Tu, “Holistically-Nested Edge Detection.” Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, Dec. 2015, pp. 1395-1403, doi: 10.1109/ICCV.2015.164.
[29] H. Greenspan, B. Ginneken, and R. M. Summers, “Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique.” IEEE Transactions on Medical Imaging, Vol. 35, No. 5, pp. 1153-1159, Apr. 2016, doi:10.1109/TMI.2016.2553401.
[30] G. E. Hinton, S. Osindero, and Y.W. Teh, “A Fast Learning Algorithm for Deep Belief Nets.” Neural Computation, Vol. 18, No. 7, pp. 1527–1554, Jul. 2006, doi:10.1162/neco.2006.18.7.1527.
[31] P. Smolensky, “Information Processing in Dynamical Systems: Foundations of Harmony Theory.” Parallel Distributed Processing: Explorations in The Microstructure of Cognition, Vol. 1, pp. 194-281, 1986.
[32] T. Tieleman, “Training Restricted Boltzmann Machines Using Approximations to the Likelihood Gradient.” Proceeding of the 25th Int. Conference on Machine Learning (ICML), Helsinki, Finland, Jul. 2008, pp. 1064-1071, doi:10.1145/1390156.1390290.
[33] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan, 1998.
[34] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines.” Proceeding of the 27th International Conference on Machine Learning (ICML), Haifa, Israel, Jun. 2010, pp. 807-814.
[35] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Improve Neural Network Acoustic Models.” Proceeding of the 30th International Conference on Machine Learning (ICML), Atlanta, Georgia, USA, Jun. 2013.
[36] D.J. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs).” arXiv preprint arXiv:1511.07289, 2016.
[37] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, “Learning Activation Functions to Improve Deep Neural Networks.” arXiv preprint arXiv:1412.6830, 2015.
[38] X. Glorot, A. Bordes, and Y. Bengio. “Deep Sparse Rectifier Neural Networks.” Proceeding of the 14th International Conference on Artificial Intelligence Statistics (AISTATS), Ft. Lauderdale, FL, USA, Apr. 2011, pp. 315-323.
[39] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software Defect Prediction via Convolutional Neural Network.” Proceeding of 2017 International Conference on Software Quality, Reliability, and Security (QRS), Prague, Czech Republic, Jul. 2017, pp. 318-328, doi:10.1109/qrs.2017.42.
[40] M. R. Lyu and A. Nikora, “A Heuristic Approach for Software Reliability Prediction: The Equally-Weighted Linear Combination Model.” Proceedings of 1991 International Symposium on Software Reliability Engineering (ISSRE), Austin, USA, May 1991, pp. 172-181, doi:10.1109/ISSRE.1991.145376.
[41] F. A. A. Laleye, E. C. Ezin, C. Motamed, “Weighted Combination of Naive Bayes and LVQ Classifier for Fongbe Phoneme Classification.” Proceedings of the 10th International Conference on Signal-Image Technology and Internet-Based Systems, Marrakech, Morocco, Nov. 2014, pp. 7-13, doi:10.1109/SITIS.2014.84.
[42] D. S. Chang and Y. S. Choi, “Weighted Combination of Q&A Retrieval Models Based on Part-of-Speech of Question Word View Document.” Proceedings of 2014 International Conference on Information Science & Application (ICISA), Seoul, South Korea, May 2014, pp. 1-4, doi:10.1109/ICISA.2014.6847483.
[43] J. Yan, X. Yun, Z. Wu, H. Luo, and S. Zhang, “A Novel Weighted Combination Technique for Traffic Classification.” Proceedings of the 2nd International Conference on Cloud Computing and Intelligence Systems, Hangzhou, China, Oct. 2012, pp. 757-761, doi:10.1109/CCIS.2012.6664277.
[44] Z. G. Liu, Q. Pan, J. Dezert, and A. Martin, “Combination of Classifiers with Optimal Weight Based on Evidential Reasoning.” IEEE Transactions on Fuzzy Systems, Vol. 26, No. 3, pp. 1217-1230, Jun. 2017, doi:10.1109/TFUZZ.2017.2718483.
[45] P. Tarare and D. Jadhav, “A Novel Video Summarization Technique Using Weighted Combination of Color and Texture Feature.” Proceedings of 2015 International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Davangere, India, Oct. 2015, pp. 403-408, doi:10.1109/ICATCCT.2015.7456917.
[46] W. Lao, Y. Wang, C. Peng, C. Ye, and Y. Zhang, “Time Series Forecasting Via Weighted Combination of Trend and Seasonality Respectively with Linearly Declining Increments and Multiple Sine Functions” Proceedings of 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, Jul. 2014, pp. 832-837, doi:10.1109/IJCNN.2014.6889609.
[47] X. Yao, “Evolving Artificial Neural Networks” Proceedings of the IEEE, Vol. 87, No. 9, pp. 1423-1447, Sep. 1999, doi:10.1109/5.784219.
[48] S. Li, Q. Yin, P. Guo, and M. R. Lyu, “A Hierarchical Mixture Model for Software Reliability Prediction.” Applied Mathematics and Computation, Vol. 185, No. 2, pp. 1120–1130, Feb. 2007, doi:10.1016/j.amc.2006.07.028.
[49] C.J. Hsu and C.Y. Huang, “Optimal Weighted Combinational Models for Software Reliability Estimation and Analysis.” IEEE Transaction on Reliability, Vol. 63, No. 3, pp. 731–749, Apr. 2014, doi:10.1109/tr.2014.2315966.
[50] N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to Predict Component Failures.” Proceeding of the 28th International Conference on Software Engineering (ICSE), Shanghai, China, May 2006, pp. 452-461, doi:10.1145/1134285.1134349.
[51] A. E. Hassan, “Predicting Faults Using the Complexity of Code Changes.” Proceeding of the 31st International Conference on Software Engineering (ICSE), Vancouver, BC, Canada, May 2009, pp. 78-88, doi:10.1109/icse.2009.5070510.
[52] R. Moser, W. Pedrycz, and G. Succi, “A Comparative Analysis of the Efficiency of Change Metrics and Static Code Attributes for Defect Prediction.” Proceeding of the 30th International Conference on Software Engineering (ICSE), Leipzig, Germany, May 2008, pp. 181-190, doi:10.1145/1368088.1368114.
[53] N. Nagappan, and T. Ball, “Use of Relative Code Churn Measures to Predict System Defect Density.” Proceeding of the 27th International Conference on Software Engineering (ICSE), Saint Louis, MO, USA, May 2005, pp. 284-292, doi:10.1109/icse.2005.1553571.
[54] A. G. Koru, D. Zhang, K. E. Emam, and H. Liu, “An Investigation into the Functional Form of the Size-Defect Relationship for Software Modules.” IEEE Transaction on Software Engineering, Vol. 35, No. 2, pp. 293–304, Dec. 2008, doi:10.1109/tse.2008.90.
[55] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Characterizing and Predicting Which Bugs Get Fixed: An Empirical Study of Microsoft Windows.” Proceeding of the 32nd International Conference on Software Engineering (ICSE), Cape Town, South Africa, May 2010, pp. 495-504, doi:10.1145/1806799.1806871.
[56] R. Purushothaman and D. E. Perry, “Toward Understanding the Rhetoric of Small Source Code Changes.” IEEE Transaction on Software Engineering, Vol. 31, No. 6, pp. 511–526, Jul. 2005, doi:10.1109/tse.2005.74.
[57] S. Matsumoto, Y. Kamei, A. Monden, KI. Matsumoto, and M. Nakamura, “An Analysis of Developer Metrics for Fault Prediction.” Proceeding of the 6th International Conference on Predictive Models in Software Engineering (PROMISE), Timişoara, Romania, Sep. 2010, pp. 18:1-18:9, doi:10.1145/1868328.1868356.
[58] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting Fault Incidence Using Software Change History.” IEEE Transaction on Software Engineering, Vol. 26, No. 7, pp. 653-661, Jul. 2000, doi:10.1109/32.859533.
[59] H. He and E. A. Garcia, “Learning from Imbalanced Data.” IEEE Transaction on Knowledge and Data Engineering, Vol. 21, No. 9, pp. 1263-1284, Jun. 2009, doi:10.1109/tkde.2008.239.
[60] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks.” Science, Vol. 313, No. 5786, pp. 504-507, Jul. 2006.
[61] S. Wang, T. Liu, and L. Tan, “Automatically Learning Semantic Features for Defect Prediction.” Proceeding of the 38th International Conference on Software Engineering (ICSE), Austin, Texas, May 2016, pp. 297-308, doi:10.1145/2884781.2884804.
[62] D. M. W. Powers, “Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation.” International Journal of Machine Learning Technology, Vol. 2, No. 1, pp. 37-63, Dec. 2011.
[63] X. Li, M. Xie, and S. H. Ng, “Sensitivity Analysis of Release Time of Software Reliability Models Incorporating Testing Effort with Multiple Change-Points.” Applied Mathematical Modelling, Vol. 34, No. 11, pp. 3560-3570, Nov. 2010.
[64] J. H. Lo, C. Y. Huang, I. Y. Chen, S. Y. Kuo, and M. R. Lyu, “Reliability Assessment and Sensitivity Analysis of Software Reliability Growth Modeling Based on Software Module Structure.” Journal of Systems and Software, Vol. 76, No. 1, pp. 3-13, Apr. 2005.
[65] M. D. Morris, “Factorial Sampling Plans for Preliminary Computational Experiments.” Technometrics, Vol. 33, No. 2, pp. 161-174, May 1991.
[66] C. Daniel, “One-at-a-time Plans.” Journal of the American Statistical Association, Vol. 68, No. 342, pp. 353-360, Jun. 1973.
[67] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, “The Screening Exercise.” Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, John Wiley & Sons, 2004.
[68] X. Wang, K. Wang, and Z. Qi, “Sensitivity Analysis of Lead Time in MRP System: A Case Study.” Proceeding of 2009 International Conference on Management and Service Science, Wuhan, China Sep. 2009, pp. 1-4, doi:10.1109/ICMSS.2009.5301796.
[69] N. O. Ali, J. M. Saleh, “A Study On Optimization of Electrical Capacitance Tomography Sensor for Flow Imaging Using One-Factor-At-A-Time Approach.” Proceeding of 2008 International Symposium on Information Technology, Kuala Lumpur, Malaysia, Aug. 2008, pp. 1-5, doi:10.1109/ITSIM.2008.4631884.
[70] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation in Software Engineering. New York, USA: Springer, 2012.
[71] C. Y. Huang, C. S. Chen, and C. E. Lai, “Evaluation and Analysis of Incorporating Fuzzy Expert System Approach into Test Suite Reduction.” Information and Software Technology, Vol. 79, pp. 79-105, Nov. 2016.
[72] K. L. Peng and C. Y. Huang, “Reliability Analysis of On-Demand Service-Based Software Systems Considering Failure Dependencies,” IEEE Transaction on Services Computing, Vol. 10, No. 3, pp. 423-435, Jun. 2017.
[73] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and G. Robles, “Towards a Simplification of the Bug Report Form in Eclipse.” Proceeding of 2008 International Working Conference on Mining Software Repositories (MSR), Leipzig, Germany, May 2008, pp. 145-148.
[74] R. Wu, H. Zhang, S. Kim, and S.C. Cheung, “Relink: Recovering Links between Bugs and Changes.” Proceeding of the 13rd European Software Engineering Conference and 19th ACM SIGSOFT Symposium on the Foundation of Software Engineering (ESEC/FSE), Szeged, Hungary, Sep. 2011, pp. 15-25.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *