|
[1] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically Enhanced Software Traceability Using Deep Learning Techniques.” Proceeding of the 39th International Conference on Software Engineering (ICSE), Buenos Aires, Argentina, May 2017, doi:10.1109/icse.2017.9. [2] A. C. Florea, J. Anvik, and R. Andonie, “Parallel Implementation of a Bug Report Assignment Recommender Using Deep Learning.” Proceeding of the 26th International Conference on Artificial Neural Network and Machine Learning (ICANN), Alghero, Sardinia, Italy, Sep. 2017, pp. 64–71, doi:10.1007/978-3-319-68612-7_8. [3] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep Learning for Just-in-Time Defect Prediction.” Proceeding of 2015 International Conference on Software Quality, Reliability, and Security (QRS), Vancouver, BC, Canada, Aug. 2015, doi:10.1109/qrs.2015.14. [4] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A Systematic Literature Review on Fault Prediction Performance in Software Engineering.” IEEE Transaction on Software Engineering, Vol. 38, No. 6, pp. 1276–1304, Oct. 2012, doi:10.1109/tse.2011.103. [5] S. Hosseini, B. Turhan, and D. Gunarathna, “A Systematic Literature Review and Meta-Analysis on Cross Project Defect Prediction.” IEEE Transaction on Software Engineering, pp. 1–1, Nov. 2017, doi:10.1109/tse.2017.2770124. [6] G. Calikli, A. Tosun, A. Bener, and M. Celik, “The Effect of Granularity Level On Software Defect Prediction View Document.” Proceedings of the 24th International Symposium on Computer and Information Sciences, Guzelyurt, Cyprus, Sep. 2009, doi:10.1109/ISCIS.2009.5291866. [7] T.P. Pushphavathi, “An Approach for Software Defect Prediction by Combined Soft Computing.” Proceedings of 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, Aug. 2017, doi: 10.1109/ICECDS.2017.8390007. [8] X. Yang and W. Wen, “Ridge and Lasso Regression Models for Cross-Version Defect Prediction.” IEEE Transactions on Reliability, Jun. 2018, doi: 10.1109/TR.2018.2847353. (pagination is not decided) [9] H. Wei, C. Shan, C. Hu, H. Sun, and M. Lei, “Software Defect Distribution Prediction Model Based On NPE-SVM.” China Communications, Vol. 15, No. 5, pp. 173-182, May 2018, doi: 10.1109/CC.2018.8387996. [10] Y. Yang, J. Yang, and H. Qian, “Defect Prediction by Using Cluster Ensembles.” Proceedings of the 10th International Conference on Advanced Computational Intelligence (ICACI), Xiamen, China, Mar. 2018, pp. 631-636, doi: 10.1109/ICACI.2018.8377533. [11] Z. Li, X. Y. Jing, and X. Zhu, “Progress On Approaches to Software Defect Prediction.” IET Software, Vol. 12, No. 3, pp. 161-175, Jun. 2018, doi: 10.1049/iet-sen.2017.0148. [12] Q. Song, Y. Guo, and M. Shepperd, “A Comprehensive Investigation of the Role of Imbalanced Learning for Software Defect Prediction.” IEEE Transactions on Software Engineering, May 2018, doi: 10.1109/TSE.2018.2836442. (pagination is not decided) [13] Z. Xu, J. Liu, X. Luo, and T. Zhang, “Cross-Version Defect Prediction Via Hybrid Active Learning with Kernel Principal Component Analysis.” Proceedings of the 25th International Conference on Software Analysis, Evolution and Reengineering (SANER), Campobasso, Italy, Mar. 2018, doi: 10.1109/SANER.2018.8330210. [14] T.J. McCabe, “A Complexity Measure.” IEEE Transaction on Software Engineering, Vol. SE-2, No. 4, pp. 308–320, Dec. 1976, doi:10.1109/tse.1976.233837. [15] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object Oriented Design.” IEEE Transaction on Software Engineering, Vol. 20, No. 6, pp. 476–493, Jun. 1994, doi:10.1109/32.295895. [16] K.O. Elish and M.O. Elish, “Predicting Defect-Prone Software Modules Using Support Vector Machines.” Journal of Systems and Software, Vol. 81, No. 5, pp. 649–660, May 2008, doi:10.1016/j.jss.2007.07.040. [17] T. Wang and W.H. Li “Naive Bayes Software Defect Prediction Model.” Proceeding of International Conference on Computational Intelligence and Software Engineering (CiSE), Wuhan, China, Dec. 2010, pp. 1-4, doi:10.1109/cise.2010.5677057. [18] X.Y. Jing, S. Ying, Z.W. Zhang, S.S. Wu, and J. Liu, “Dictionary Learning Based Software Defect Prediction.” Proceeding of the 36th International Conference on Software Engineering (ICSE), Hyderabad, India, May 2014, pp. 414-423, doi:10.1145/2568225.2568320. [19] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi, “A Large-Scale Empirical Study of Just-In-Time Quality Assurance.” IEEE Transaction on Software Engineering, Vol. 39, No. 6, pp. 757–773, Nov. 2012, doi:10.1109/tse.2012.70. [20] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N. Ubayashi, “An Empirical Study of Just-In-Time Defect Prediction Using Cross-Project Models.” Proceeding of the 11th Working Conference on Mining Software Repositories (MSR), Hyderabad, India, May 2014, pp. 172-181, doi:10.1145/2597073.2597075. [21] A. Mockus and D. M. Weiss, “Predicting Risk of Software Changes.” Bell Labs Technical Journal, Vol. 5, No. 2, pp. 169–180, Apr. 2000, doi:10.1002/bltj.2229. [22] S. Kim, E. J. Whitehead, Jr., and Y. Zhang, “Classifying Software Changes: Clean or Buggy?” IEEE Transaction on Software Engineering, Vol. 34, No. 2, pp. 181–196, Mar. 2008, doi:10.1109/tse.2007.70773. [23] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A Unified Embedding fr Face Recognition and Clustering.” Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, Jun. 2015, pp. 815-823, doi:10.1109/CVPR.2015.7298682. [24] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P.H. S. Torr, “Conditional Random Fields as Recurrent Neural Networks.” Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, Dec. 2015, pp. 1529-1537, doi:10.1109/ICCV.2015.179. [25] C. Dong, C. C. Loy, K. He, and X. Tang, “Image Super-Resolution Using Deep Convolutional Networks.” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 38, No. 2, pp. 295-307, Jun. 2015, doi:10.1109/TPAMI.2015.2439281. [26] G. Carneiro, J. C. Nascimento, and A. Freitas, “The Segmentation of the Left Ventricle of the Heart from Ultrasound Data Using Deep Learning Architectures and Derivative-Based Search Methods.” IEEE Transactions on Image Processing, Vol. 21, No. 3, pp. 968-982, Sep. 2011, doi:10.1109/TIP.2011.2169273. [27] G. Tur, L. Deng, D. H. Tür, and X. He, “Towards Deeper Understanding: Deep Convex Networks for Semantic Utterance Classification.” Proceeding of 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, Mar. 2012, pp. 5045-5048, doi:10.1109/ICASSP.2012.6289054. [28] S. Xie and Z. Tu, “Holistically-Nested Edge Detection.” Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, Dec. 2015, pp. 1395-1403, doi: 10.1109/ICCV.2015.164. [29] H. Greenspan, B. Ginneken, and R. M. Summers, “Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique.” IEEE Transactions on Medical Imaging, Vol. 35, No. 5, pp. 1153-1159, Apr. 2016, doi:10.1109/TMI.2016.2553401. [30] G. E. Hinton, S. Osindero, and Y.W. Teh, “A Fast Learning Algorithm for Deep Belief Nets.” Neural Computation, Vol. 18, No. 7, pp. 1527–1554, Jul. 2006, doi:10.1162/neco.2006.18.7.1527. [31] P. Smolensky, “Information Processing in Dynamical Systems: Foundations of Harmony Theory.” Parallel Distributed Processing: Explorations in The Microstructure of Cognition, Vol. 1, pp. 194-281, 1986. [32] T. Tieleman, “Training Restricted Boltzmann Machines Using Approximations to the Likelihood Gradient.” Proceeding of the 25th Int. Conference on Machine Learning (ICML), Helsinki, Finland, Jul. 2008, pp. 1064-1071, doi:10.1145/1390156.1390290. [33] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan, 1998. [34] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines.” Proceeding of the 27th International Conference on Machine Learning (ICML), Haifa, Israel, Jun. 2010, pp. 807-814. [35] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Improve Neural Network Acoustic Models.” Proceeding of the 30th International Conference on Machine Learning (ICML), Atlanta, Georgia, USA, Jun. 2013. [36] D.J. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs).” arXiv preprint arXiv:1511.07289, 2016. [37] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, “Learning Activation Functions to Improve Deep Neural Networks.” arXiv preprint arXiv:1412.6830, 2015. [38] X. Glorot, A. Bordes, and Y. Bengio. “Deep Sparse Rectifier Neural Networks.” Proceeding of the 14th International Conference on Artificial Intelligence Statistics (AISTATS), Ft. Lauderdale, FL, USA, Apr. 2011, pp. 315-323. [39] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software Defect Prediction via Convolutional Neural Network.” Proceeding of 2017 International Conference on Software Quality, Reliability, and Security (QRS), Prague, Czech Republic, Jul. 2017, pp. 318-328, doi:10.1109/qrs.2017.42. [40] M. R. Lyu and A. Nikora, “A Heuristic Approach for Software Reliability Prediction: The Equally-Weighted Linear Combination Model.” Proceedings of 1991 International Symposium on Software Reliability Engineering (ISSRE), Austin, USA, May 1991, pp. 172-181, doi:10.1109/ISSRE.1991.145376. [41] F. A. A. Laleye, E. C. Ezin, C. Motamed, “Weighted Combination of Naive Bayes and LVQ Classifier for Fongbe Phoneme Classification.” Proceedings of the 10th International Conference on Signal-Image Technology and Internet-Based Systems, Marrakech, Morocco, Nov. 2014, pp. 7-13, doi:10.1109/SITIS.2014.84. [42] D. S. Chang and Y. S. Choi, “Weighted Combination of Q&A Retrieval Models Based on Part-of-Speech of Question Word View Document.” Proceedings of 2014 International Conference on Information Science & Application (ICISA), Seoul, South Korea, May 2014, pp. 1-4, doi:10.1109/ICISA.2014.6847483. [43] J. Yan, X. Yun, Z. Wu, H. Luo, and S. Zhang, “A Novel Weighted Combination Technique for Traffic Classification.” Proceedings of the 2nd International Conference on Cloud Computing and Intelligence Systems, Hangzhou, China, Oct. 2012, pp. 757-761, doi:10.1109/CCIS.2012.6664277. [44] Z. G. Liu, Q. Pan, J. Dezert, and A. Martin, “Combination of Classifiers with Optimal Weight Based on Evidential Reasoning.” IEEE Transactions on Fuzzy Systems, Vol. 26, No. 3, pp. 1217-1230, Jun. 2017, doi:10.1109/TFUZZ.2017.2718483. [45] P. Tarare and D. Jadhav, “A Novel Video Summarization Technique Using Weighted Combination of Color and Texture Feature.” Proceedings of 2015 International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Davangere, India, Oct. 2015, pp. 403-408, doi:10.1109/ICATCCT.2015.7456917. [46] W. Lao, Y. Wang, C. Peng, C. Ye, and Y. Zhang, “Time Series Forecasting Via Weighted Combination of Trend and Seasonality Respectively with Linearly Declining Increments and Multiple Sine Functions” Proceedings of 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, Jul. 2014, pp. 832-837, doi:10.1109/IJCNN.2014.6889609. [47] X. Yao, “Evolving Artificial Neural Networks” Proceedings of the IEEE, Vol. 87, No. 9, pp. 1423-1447, Sep. 1999, doi:10.1109/5.784219. [48] S. Li, Q. Yin, P. Guo, and M. R. Lyu, “A Hierarchical Mixture Model for Software Reliability Prediction.” Applied Mathematics and Computation, Vol. 185, No. 2, pp. 1120–1130, Feb. 2007, doi:10.1016/j.amc.2006.07.028. [49] C.J. Hsu and C.Y. Huang, “Optimal Weighted Combinational Models for Software Reliability Estimation and Analysis.” IEEE Transaction on Reliability, Vol. 63, No. 3, pp. 731–749, Apr. 2014, doi:10.1109/tr.2014.2315966. [50] N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to Predict Component Failures.” Proceeding of the 28th International Conference on Software Engineering (ICSE), Shanghai, China, May 2006, pp. 452-461, doi:10.1145/1134285.1134349. [51] A. E. Hassan, “Predicting Faults Using the Complexity of Code Changes.” Proceeding of the 31st International Conference on Software Engineering (ICSE), Vancouver, BC, Canada, May 2009, pp. 78-88, doi:10.1109/icse.2009.5070510. [52] R. Moser, W. Pedrycz, and G. Succi, “A Comparative Analysis of the Efficiency of Change Metrics and Static Code Attributes for Defect Prediction.” Proceeding of the 30th International Conference on Software Engineering (ICSE), Leipzig, Germany, May 2008, pp. 181-190, doi:10.1145/1368088.1368114. [53] N. Nagappan, and T. Ball, “Use of Relative Code Churn Measures to Predict System Defect Density.” Proceeding of the 27th International Conference on Software Engineering (ICSE), Saint Louis, MO, USA, May 2005, pp. 284-292, doi:10.1109/icse.2005.1553571. [54] A. G. Koru, D. Zhang, K. E. Emam, and H. Liu, “An Investigation into the Functional Form of the Size-Defect Relationship for Software Modules.” IEEE Transaction on Software Engineering, Vol. 35, No. 2, pp. 293–304, Dec. 2008, doi:10.1109/tse.2008.90. [55] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Characterizing and Predicting Which Bugs Get Fixed: An Empirical Study of Microsoft Windows.” Proceeding of the 32nd International Conference on Software Engineering (ICSE), Cape Town, South Africa, May 2010, pp. 495-504, doi:10.1145/1806799.1806871. [56] R. Purushothaman and D. E. Perry, “Toward Understanding the Rhetoric of Small Source Code Changes.” IEEE Transaction on Software Engineering, Vol. 31, No. 6, pp. 511–526, Jul. 2005, doi:10.1109/tse.2005.74. [57] S. Matsumoto, Y. Kamei, A. Monden, KI. Matsumoto, and M. Nakamura, “An Analysis of Developer Metrics for Fault Prediction.” Proceeding of the 6th International Conference on Predictive Models in Software Engineering (PROMISE), Timişoara, Romania, Sep. 2010, pp. 18:1-18:9, doi:10.1145/1868328.1868356. [58] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting Fault Incidence Using Software Change History.” IEEE Transaction on Software Engineering, Vol. 26, No. 7, pp. 653-661, Jul. 2000, doi:10.1109/32.859533. [59] H. He and E. A. Garcia, “Learning from Imbalanced Data.” IEEE Transaction on Knowledge and Data Engineering, Vol. 21, No. 9, pp. 1263-1284, Jun. 2009, doi:10.1109/tkde.2008.239. [60] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks.” Science, Vol. 313, No. 5786, pp. 504-507, Jul. 2006. [61] S. Wang, T. Liu, and L. Tan, “Automatically Learning Semantic Features for Defect Prediction.” Proceeding of the 38th International Conference on Software Engineering (ICSE), Austin, Texas, May 2016, pp. 297-308, doi:10.1145/2884781.2884804. [62] D. M. W. Powers, “Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation.” International Journal of Machine Learning Technology, Vol. 2, No. 1, pp. 37-63, Dec. 2011. [63] X. Li, M. Xie, and S. H. Ng, “Sensitivity Analysis of Release Time of Software Reliability Models Incorporating Testing Effort with Multiple Change-Points.” Applied Mathematical Modelling, Vol. 34, No. 11, pp. 3560-3570, Nov. 2010. [64] J. H. Lo, C. Y. Huang, I. Y. Chen, S. Y. Kuo, and M. R. Lyu, “Reliability Assessment and Sensitivity Analysis of Software Reliability Growth Modeling Based on Software Module Structure.” Journal of Systems and Software, Vol. 76, No. 1, pp. 3-13, Apr. 2005. [65] M. D. Morris, “Factorial Sampling Plans for Preliminary Computational Experiments.” Technometrics, Vol. 33, No. 2, pp. 161-174, May 1991. [66] C. Daniel, “One-at-a-time Plans.” Journal of the American Statistical Association, Vol. 68, No. 342, pp. 353-360, Jun. 1973. [67] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, “The Screening Exercise.” Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, John Wiley & Sons, 2004. [68] X. Wang, K. Wang, and Z. Qi, “Sensitivity Analysis of Lead Time in MRP System: A Case Study.” Proceeding of 2009 International Conference on Management and Service Science, Wuhan, China Sep. 2009, pp. 1-4, doi:10.1109/ICMSS.2009.5301796. [69] N. O. Ali, J. M. Saleh, “A Study On Optimization of Electrical Capacitance Tomography Sensor for Flow Imaging Using One-Factor-At-A-Time Approach.” Proceeding of 2008 International Symposium on Information Technology, Kuala Lumpur, Malaysia, Aug. 2008, pp. 1-5, doi:10.1109/ITSIM.2008.4631884. [70] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation in Software Engineering. New York, USA: Springer, 2012. [71] C. Y. Huang, C. S. Chen, and C. E. Lai, “Evaluation and Analysis of Incorporating Fuzzy Expert System Approach into Test Suite Reduction.” Information and Software Technology, Vol. 79, pp. 79-105, Nov. 2016. [72] K. L. Peng and C. Y. Huang, “Reliability Analysis of On-Demand Service-Based Software Systems Considering Failure Dependencies,” IEEE Transaction on Services Computing, Vol. 10, No. 3, pp. 423-435, Jun. 2017. [73] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and G. Robles, “Towards a Simplification of the Bug Report Form in Eclipse.” Proceeding of 2008 International Working Conference on Mining Software Repositories (MSR), Leipzig, Germany, May 2008, pp. 145-148. [74] R. Wu, H. Zhang, S. Kim, and S.C. Cheung, “Relink: Recovering Links between Bugs and Changes.” Proceeding of the 13rd European Software Engineering Conference and 19th ACM SIGSOFT Symposium on the Foundation of Software Engineering (ESEC/FSE), Szeged, Hungary, Sep. 2011, pp. 15-25.
|