帳號:guest(18.117.141.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃大維
作者(外文):Huang, Ta-Wei
論文名稱(中文):協同式自適應巡航控制系統的序列重組自動化
論文名稱(外文):Vehicle Sequence Reordering with Cooperative Adaptive Cruise Control
指導教授(中文):何宗易
指導教授(外文):Ho, Tsung-Yi
口試委員(中文):李淑敏
林忠緯
口試委員(外文):Li, Shu-Min
Lin, Chung-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系所
學號:105062542
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:33
中文關鍵詞:巡航控制系統序列重組車輛列隊行駛
外文關鍵詞:Cooperative Adaptive Cruise ControlSequence ReorderingVehicle platooning
相關次數:
  • 推薦推薦:0
  • 點閱點閱:278
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在自動化高速公路系統中,車輛列隊行駛可以增加交通吞吐量和能源使用效率。協同式自適應巡航控制系統允許車輛之間相互通信和車輛列隊行駛。在車輛列隊行駛時,其中一輛車會以固定的距離或固定的時間間隔跟隨前面的另一輛車。目前大多數研究都假設車輛列隊行駛中所有車輛的類型和能力是一樣的,而且兩個車輛之間的距離是固定的距離。但是,車輛之間的距離應該與車輛能力有關。在這篇論文中,我們考慮不同車輛之間的煞車能力係數,通過重新排序使車輛列隊行駛的總長度最小化。因此,我們制定車輛序列的重新排序問題和提出啟發式演算法來解決此問題,同時嘗試最小化總體的需要時間。
In Automated Highway System (AHS), grouping vehicles into platoons can increase
the trac throughput and energy eciency. With Cooperative Adaptive Cruise Control
(CACC) system, vehicles are allowed to communicated and cooperate with each other to
form platoons, where one vehicle follows another with a predefined spacing or time gap.
Most studies assumed that type and capabilities of all the vehicles in a platoon are homogeneous
and the spacing between two vehicles is a constant spacing. However, spacing
between vehicles should be related to vehicles capabilities. In this thesis, we take into
account braking factor of di erent vehicles in order to minimize platoon length by reordering
platoon sequence. Therefore, we formulate platoon sequence reordering problem and
propose a heuristic algorithm while minimizing the total operation time.
Acknowledgement i
Abstract ii
1 Introduction 1
1.1 Benefits of Vehicle Platooning . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Adaptive Cruise Control (ACC) and Vehicle-to-Vehicle (V2V) . . . . . . . 2
1.3 Cooperative Adaptive Cruise Control (CACC) . . . . . . . . . . . . . . . . 2
1.4 Spacing Policy Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Related Work 5
2.1 Platoon Maneuvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Sequence Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Preliminaries 10
3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Sequence Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Change Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Move Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Problem Formulation 15
4.1 Permutation Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Methodology 18
5.1 Enumeration Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Clique-based Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Partition-Merge Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6 Experimental Results 27
6.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7 Conclusion 30
References 31
[1] B. Van Arem, C. J. Van Driel, and R. Visser, “The impact of cooperative adaptive
cruise control on trac-flow characteristics,” IEEE Transactions on Intelligent Transportation
Systems, vol. 7, no. 4, pp. 429–436, 2006.
[2] M. Michaelian and F. Browand, “Field experiments demonstrate fuel savings for
close-following,” 2000.
[3] R. Rajamani and S. E. Shladover, “An experimental comparative study of autonomous
and co-operative vehicle-follower control systems,” Transportation Research Part C:
Emerging Technologies, vol. 9, no. 1, pp. 15–31, 2001.
[4] T. Taleb, A. Benslimane, and K. B. Letaief, “Toward an e ective risk-conscious and
collaborative vehicular collision avoidance system,” IEEE Transactions on Vehicular
Technology, vol. 59, no. 3, pp. 1474–1486, 2010.
[5] F. Bai and B. Krishnamachari, “Exploiting the wisdom of the crowd: localized, distributed
information-centric vanets [topics in automotive networking],” IEEE Communications
Magazine, vol. 48, no. 5, 2010.
[6] M. di Bernardo, A. Salvi, and S. Santini, “Distributed consensus strategy for platooning
of vehicles in the presence of time-varying heterogeneous communication delays,”IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 1, pp. 102–112,
2015.
[7] F. Bu, H.-S. Tan, and J. Huang, “Design and field testing of a cooperative adaptive
cruise control system,” in American Control Conference (ACC), pp. 4616–4621,
IEEE, 2010.
[8] G. Naus, R. Vugts, J. Ploeg, R. van de Molengraft, and M. Steinbuch, “Cooperative
adaptive cruise control, design and experiments,” in American Control Conference
(ACC), pp. 6145–6150, IEEE, 2010.
[9] S. E. Shladover, C. Nowakowski, X.-Y. Lu, and R. Ferlis, “Cooperative adaptive
cruise control: Definitions and operating concepts,” Transportation Research Record:
Journal of the Transportation Research Board, no. 2489, pp. 145–152, 2015.
[10] V. Milan´es, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Nakamura,
“Cooperative adaptive cruise control in real trac situations,” IEEE Transactions
on Intelligent Transportation Systems, vol. 15, no. 1, pp. 296–305, 2014.
[11] Z. Wang, G. Wu, and M. J. Barth, “Developing a distributed consensus-based cooperative
adaptive cruise control system for heterogeneous vehicles with predecessor
following topology,” Journal of Advanced Transportation, 2017.
[12] M. Amoozadeh, H. Deng, C.-N. Chuah, H. M. Zhang, and D. Ghosal, “Platoon management
with cooperative adaptive cruise control enabled by vanet,” Vehicular communications,
vol. 2, no. 2, pp. 110–123, 2015.
[13] E. S. Kazerooni and J. Ploeg, “Interaction protocols for cooperative merging and lane
reduction scenarios,” in 18th International IEEE Conference on Intelligent Transportation
Systems (ITSC), pp. 1964–1970, 2015.
[14] R. Hall and C. Chin, “Vehicle sorting for platoon formation: Impacts on highway entry
and throughput,” Transportation Research Part C: Emerging Technologies, vol. 13,
no. 5-6, pp. 405–420, 2005.
[15] P. Hao, Z. Wang, G. Wu, K. Boriboonsomsin, and M. Barth, “Intra-platoon vehicle
sequence optimization for eco-cooperative adaptive cruise control,” in Proceedings
of the 20th International IEEE Conference on Intelligent Transportation Systems
(ITSC’17), 2017.
[16] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network
partitions,” in 19th Conference on Design Automation, pp. 175–181, IEEE, 1982.
[17] P. Varaiya, “Smart cars on smart roads: problems of control,” IEEE Transactions on
automatic control, vol. 38, no. 2, pp. 195–207, 1993.
33
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *