|
[1] Apache. Apache spark. [Online]. Available: https://spark.apache.org. [2] Apache. Hbase. [Online]. Available: https://hbase.apache.org. [3] Apache. Hive. [Online]. Available: https://hive.apache.org. [4] Apache. Hiveql. [Online]. Available: https://cwiki.apache.org/confluence/ display/Hive/LanguageManual. [5] Apache. Mapreduce history server rest api. [Online]. Available: https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/ hadoop-mapreduce-client-hs/HistoryServerRest.html. [6] Chen, C. O., Zhuo, Y. Q., Yeh, C. C., Lin, C. M., and Liao, S. W. Machine learning-based configuration parameter tuning on hadoop system. In 2015 IEEE International Congress on Big Data (June 2015), pp. 386–392. [7] Dokeroglu, T., Cınar, M. S., Sert, S. A., Cosar, A., and Yazıcı, A. Improv- ing Hadoop Hive Query Response Times Through Efficient Virtual Resource Allocation. Springer International Publishing, Cham, 2016, pp. 215–225. [8] Dokeroglu, T., Ozal, S., Bayir, M. A., Cinar, M. S., and Cosar, A. Improv- ing the performance of hadoop hive by sharing scan and computation tasks. Journal of Cloud Computing 3, 1 (Jul 2014), 12. [9] Gandhi, A., Thota, S., Dube, P., Kochut, A., and Zhang, L. Autoscaling for hadoop clusters. In 2016 IEEE International Conference on Cloud Engineering (IC2E) (April 2016), pp. 109–118. [10] Google. Tensorflow. [Online]. Available: https://www.tensorflow.org. [11] Haryono, G. P., and Zhou, Y. Profiling apache hive query from run time logs. 2016 International Conference on Big Data and Smart Computing (BigComp) (2016), 61–68. [12] He,K.,Zhang,X.,Ren,S.,andSun,J.Deepresiduallearningforimagerecog- nition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), 770–778. [13] Hortonworks. hive-testbench. [Online]. Available: https://github.com/ hortonworks/hive-testbench. 35 [14] Hu, S., Liu, W., Rabl, T., Huang, S., Liang, Y., Xiao, Z., Jacobsen, H. A., Pei, X., and Wang, J. Dualtable: A hybrid storage model for update optimization in hive. In 2015 IEEE 31st International Conference on Data Engineering (April 2015), pp. 1340–1351. [15] Huai,Y.,Chauhan,A.,Gates,A.,Hagleitner,G.,Hanson,E.N.,O’Malley,O., Pandey, J., Yuan, Y., Lee, R., and Zhang, X. Major technical advancements in apache hive. In Proceedings of the 2014 ACM SIGMOD International Con- ference on Management of Data (New York, NY, USA, 2014), SIGMOD ’14, ACM, pp. 1235–1246. [16] Kadirvel, S., and Fortes, J. A. B. Grey-box approach for performance predic- tion in map-reduce based platforms. 2012 21st International Conference on Computer Communications and Networks (ICCCN) (2012), 1–9. [17] Lama, P., and Zhou, X. Aroma: Automated resource allocation and configu- ration of mapreduce environment in the cloud. In Proceedings of the 9th Inter- national Conference on Autonomic Computing (New York, NY, USA, 2012), ICAC ’12, ACM, pp. 63–72. [18] Lee, R., Luo, T., Huai, Y., Wang, F., He, Y., and Zhang, X. Ysmart: Yet another sql-to-mapreduce translator. In 2011 31st International Conference on Distributed Computing Systems (June 2011), pp. 25–36. [19] Ng, J. Y., Hausknecht, M. J., Vijayanarasimhan, S., Vinyals, O., Monga, R., and Toderici, G. Beyond short snippets: Deep networks for video classifica- tion. CoRR abs/1503.08909 (2015). [20] Reinsel, D., Gantz, J., and Rydning, J. Data age 2025: The evolution of data to life-critical don’t focus on big data. Focus on the Data That’s Big Sponsored by Seagate The Evolution of Data to Life-Critical Don’t Focus on Big Data (2017). [21] Sak, H., Senior, A. W., Rao, K., and Beaufays, F. Fast and accurate recurrent neural network acoustic models for speech recognition. CoRR abs/1507.06947 (2015). [22] Sangroya, A., and Singhal, R. Performance assurance model for hiveql on large data volume. In 2015 IEEE 22nd International Conference on High Per- formance Computing Workshops (Dec 2015), pp. 26–33. [23] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driess- che, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. Mastering the game of go with deep neural networks and tree search. Nature 529 (2016), 484–503. [24] Verma, A., Cherkasova, L., and Campbell, R. H. Aria: Automatic resource inference and allocation for mapreduce environments. In Proceedings of the 8th ACM International Conference on Autonomic Computing (New York, NY, USA, 2011), ICAC ’11, ACM, pp. 235–244. 36
[25] Wang, G., Butt, A. R., Pandey, P., and Gupta, K. A simulation approach to evaluating design decisions in mapreduce setups. In 2009 IEEE International Symposium on Modeling, Analysis Simulation of Computer and Telecommuni- cation Systems (Sept 2009), pp. 1–11. [26] Wang, K., Bian, Z., Chen, Q., Wang, R., and Xu, G. Simulating hive clus- ter for deployment planning, evaluation and optimization. In 2014 IEEE 6th International Conference on Cloud Computing Technology and Science (Dec 2014), pp. 475–482. [27] Wang, Y., Xu, Y., Liu, Y., Chen, J., and Hu, S. Qmapper for smart grid: Migrating sql-based application to hive. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (New York, NY, USA, 2015), SIGMOD ’15, ACM, pp. 647–658. [28] Wu,G.,Greathouse,J.L.,Lyashevsky,A.,Jayasena,N.,andChiou,D.Gpgpu performance and power estimation using machine learning. In 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA) (Feb 2015), pp. 564–576. [29] Zhang, J., and Zong, C. Deep neural networks in machine translation: An overview. IEEE Intelligent Systems 30, 5 (Sept 2015), 16–25. [30] Zhang, Z., Cherkasova, L., and Loo, B. T. Autotune: Optimizing execution concurrency and resource usage in mapreduce workflows. In Proceedings of the 10th International Conference on Autonomic Computing (ICAC 13) (San Jose, CA, 2013), USENIX, pp. 175–181. |