|
[1] Li and N. Vasconcelos. Multiple Instance Learning for Soft Bags via Top Instances. In CVPR, 2015. [2] X. Cai, F. Nie and H. Huang. Exact Top-k Feature Selection via ℓ2,0-Norm Constraint. In IJCAI, 2013. [3] T. Durand, T. Mordan, N. Thome and M. Cord. WILDCAT: Weakly Supervised Learning of Deep ConvNets for Image Classification, Pointwise Localization and Segmentation. In CVPR, 2017. [4] G. Huang, D. Chen, T. Li, and F. Wu. Multi-scale dense networks for resource efficient image classification. In ICLR, 2018. [5] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks for one shot learning. In NIPS, 2016. [6] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, A. Karpathy Z. Huang, A. Khosla, M. Bernstein, A.C. Berg, and L. Fei-Fei. Imagenet large scale visual recognition challenge. IJCV, 115(3):211–252, 2015. [7] B. M. Lake, R. Salakhutdinov, J. Gross, and J. B. Tenenbaum. One shot learning of simple visual concepts. In CogSci, 2011. [8] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In ICML, 2017. [9] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017. [10] B. Hariharan and R. Girshick. Low-shot Visual Recognition by Shrinking and Hallucinating Features. In ICCV, 2017. [11] N. Mishra, M. Rohaninejad, X. Chen and P. Abbeel. A Simple Neural Attentitive Meta-learner. In ICLR, 2018 [12] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot image recognition. In ICML Workshop, 2015. [13] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. In NIPS, 2017. [14] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for discriminative localization. In CVPR, 2016. [15] V. Garcia and J. Bruna. Few-shot Learning With Graph Neural Networks. In ICLR, 2018. [16] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H.S. Torr and T.M. Hospedales. Learning to Compare: Relation Network for Few-Shot Learning. In CVPR, 2018. [17] T. Munkhdalai and H. Yu. Meta networks. arXiv preprint arXiv:1703.00837, 2017. [18] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with memory-augmented neural networks. In ICML, 2016. [19] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. TPAMI, 2006. [20] T. Durand, N. Thome, and M. Cord. MANTRA: Minimum Maximum Latent Structural SVM for Image Classification and Ranking. In ICCV, 2015. [21] T. Durand, N. Thome, and M. Cord. WELDON: Weakly supervised learning of deep convolutional neural networks. In CVPR, 2016. [22] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free? Weakly-supervised learning with convolutional neural networks. In CVPR, 2015. [23] C. Sun, M. Paluri, R. Collobert, R. Nevatia, and L. Bourdev. ProNet: Learning to Propose Object-Specific Boxes for Cascaded Neural Networks. In CVPR, 2016. [24] F. X. Yu, D. Liu, S. Kumar, T. Jebara, and S.-F. Chang. ∝svm for learning with label proportions. In ICML, 2013. [25] S. N. Parizi, A. Vedaldi, A. Zisserman, and P. F. Felzenszwalb. Automatic discovery and optimization of parts for image classification. In ICLR, 2015. [26] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. NetVLAD: CNN architecture for weakly supervised place recognition. In CVPR, 2016. [27] Pytorch. URL https://github.com/pytorch/pytorch. [28] H. Edwards and A, Storkey. Towards a neural statistician. arXiv preprint arXiv:1606.02185, 2016. [29] L. Kaiser, O. Nachum, A. Roy and S. Bengio. Learning to remember rare events. arXiv preprint arXiv:1703.03129, 2017. [30] Z. Li, F. Zhou, F. Chen and H. Li. Meta-sgd: Learning to learn quickly for few shot learning. arXiv preprint arXiv:1707.09835, 2017. |