帳號:guest(3.21.244.94)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐悠博
作者(外文):Hsu, Yu-Po
論文名稱(中文):感知無線電網路中頻道選擇與會面問題的聯合決策研究
論文名稱(外文):A Joint Problem of Rendezvous and Channel Selection in Cognitive Radio Networks
指導教授(中文):李端興
指導教授(外文):Lee, Duan-Shin
口試委員(中文):張正尚
林華君
口試委員(外文):Chang, Cheng-Shang
Lin, Hwa-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系所
學號:105062522
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:28
中文關鍵詞:賽局理論奈許平衡會面問題
外文關鍵詞:game theoryNash equilibriumrendezvous problem
相關次數:
  • 推薦推薦:0
  • 點閱點閱:813
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
在這篇論文中,我們首先以賽局理論來分析會面問題,並找出該賽局的奈許平衡。接著提出一個強化學習方法,希望在沒有額外資訊的情況下讓次要使用者能在閒置機率較高的頻道上見面。透過數學分析證明此強化學習方法會收斂,且其行為等同於純策略的奈許平衡。最後經由與其他方法的比較,發現此方法收斂的結果最為接近最佳解。
In cognitive radio networks, rendezvous algorithms play an important role. They aim to promise secondary users to meet on the same channel in a bounded time. But these works often neglect the influence of primary user activities. On the other way, there may be more collisions as the number of secondary users raised up. The aim of this paper is to design a method to let secondary users keep meeting on a better channel. We first model rendezvous problem as a game, then approximate the desire equilibriums using reinforcement learning. The convergence in some simple cases is proved. Some extra mechanisms are applied to handle the case of multiple secondary user pairs. Through simulations, we show the presented reinforcement learning technique is able to converge to channels with higher channel idle probabilities.
中文摘要......................................i
Abstract....................................ii
Acknowledgements...........................iii
List of Figures..............................v
List of Tables.............................vii
1 Introduction...............................1
2 System Model and Game Analysis.............3
3 A Reinforcement Learning Approach..........9
4 Extra Mechanisms..........................18
5 Simulation Results........................22
6 Conclusions...............................26
Bibliography................................27
[1] I. F. Akyildiz,W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Computer networks, vol. 50, no. 13, pp. 2127–2159, 2006.
[2] H. Liu, Z. Lin, X. Chu, and Y.-W. Leung, “Jump-stay rendezvous algorithm for cognitive radio networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 10, pp. 1867–1881, 2012.
[3] C.-S. Chang, Y.-C. Chang, and J.-P. Sheu, “A fast multi-radio rendezvous algorithm in heterogeneous cognitive radio networks,” preprint, 2017.
[4] J.-P. Sheu and J.-J. Lin, “A multi-radio rendezvous algorithm based on chinese remainder theorem in heterogeneous cognitive radio networks,” IEEE Transactions on Mobile Computing, 2018.
[5] C. Claus and C. Boutilier, “The dynamics of reinforcement learning in cooperative multiagent systems,” AAAI/IAAI, vol. 1998, pp. 746– 752, 1998.
[6] J. F. Nash et al., “Equilibrium points in n-person games,” Proceed-ings of the national academy of sciences, vol. 36, no. 1, pp. 48–49,1950.
[7] I. Erev and A. E. Roth, “Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria,” American economic review, pp. 848–881, 1998.
[8] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit problems,” arXiv preprint arXiv:1402.6028, 2014.
[9] C. L. Watson and S. Biswas, “Q-learning and p-persistent csma based rendezvous protocol for cognitive radio networks operating with shared spectrum activity,” in Open Architecture/Open Business Model Net-Centric Systems and Defense Transformation 2014, vol. 9096. International Society for Optics and Photonics, 2014, p. 909602.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *