帳號:guest(3.136.26.99)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林冠宇
作者(外文):Lin, Kuan-Yu
論文名稱(中文):窄頻物聯網隨機存取機制之模擬:基於ns-3的實例開發
論文名稱(外文):Simulating NB-IoT Random Access: Using ns-3 as an Example
指導教授(中文):楊舜仁
指導教授(外文):Yang, Shun-Ren
口試委員(中文):高榮駿
林風
口試委員(外文):Kao, Jung-Chun
Lin, Phone
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系所
學號:105062519
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:49
中文關鍵詞:物聯網窄頻物聯網技術長期演進技術隨機存取程序ns-3
外文關鍵詞:Internet of ThingsNB-IoTLTErandom accessns-3
相關次數:
  • 推薦推薦:0
  • 點閱點閱:624
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著物聯網(Internet Of Things, IoT)概念的興起,越來越多相關的標準與技術都逐一被提出與討論。而在這當中,如何妥善運用既有的Long Term Evolution (LTE)網路架構與硬體去建構IoT也成為一個很重要的議題。但是,LTE跟LTE-Advanced (LTE-A)都已被證實無法有效的應用在IoT的情境上。因為對於IoT的設計來說,最優先考量的事情不再是良好的網路服務品質或是快速的資料交換速度。相反的,IoT的技術最重要的是著重在如何擴大訊號涵蓋範圍、降低整體複雜度、減少能源消耗等。此外,倘若繼續採用LTE或LTE-A,也無法有效處理大量連接的裝置。因此,窄頻物聯網 (NB-IoT)技術由3GPP在release 13中提出,用以在兼容既有LTE網路架構的前提上,建構可以迎合IoT特性的標準技術。而在窄頻物聯網的眾多討論子議題中,能夠讓基地台與UE進行同步,進而互相傳送資料的隨機接入 (Random Access)程序又是一個極為重要的關鍵議題。因此對於隨機接入程序的研究非常的多樣化,那對於眾多學術或商業研究來說,由於硬體限制、成本考量等因素,一個適當的網路模擬器便成為不可或缺的工具。我們的目標是基於release 13實現NB-IoT隨機程序的模擬模型。在本文中,除了提供LTE和NB-IoT隨機程序的概述,我們也基於網路模擬工具ns-3的LTE-EPC Network simulAtor (LENA)模組,設計並實現了NB-IoT隨機程序的模擬。此外,本文還提供了模擬結果的驗證和分析,如平均訪問延遲,中斷概率等。同時也通過模擬結果,驗證了模擬模型中的步驟和時域參數使用的正確性。
With the rise of the concept of Internet Of Things (IoT), more and more related technologies have been proposed and discussed. Among them, how to properly use the existing Long Term Evolution (LTE) network architecture to construct IoT has become an important issue. However, both LTE and LTE-Advanced (LTE-A) have been proven to be ineffective in the context of IoT. Because for IoT design, the top priority is no longer network service quality or data exchange speed. Conversely, the most important aspect of IoT technology is how to expand the coverage of the signal, reduce the overall complexity, and reduce energy consumption. Therefore, the narrowband Internet of Things (NB-IoT) technology was proposed by 3GPP in Release 13 to construct a standard technology that can meet the IoT characteristics on the premise of compatibility with existing LTE network architectures. Among the sub-topics of the NB-IoT, the Random Access(RA) procedure that allows the eNB to synchronize with the User Equipments (UEs) and transmit data to each other is an extremely important issue. Therefore, the research on RA procedures is very diverse. For many academic or commercial research, an appropriate network simulator becomes an indispensable tool due to hardware limitations and cost considerations. Our goal is to implement a simulation model of the NB-IoT RA procedure. In this paper, in addition to providing an overview of LTE and NB-IoT RA procedures, we also designed and implemented a simulation of the NB-IoT RA procedure based on the LTE-EPC Network simulAtor (LENA) module of the network simulation tool ns-3. In addition, the paper also provides verification and analysis of simulation results, such as average access latency and outage probability. At the same time, the correctness of the steps and time domain parameters in the simulation model is also verified by the simulation results.
摘要
Abstract
Contents
List of Figures
List of Tables
1 Introduction--------------------------------------1
2 Related Work--------------------------------------3
3 Random Access Procedure in LTE and NB-IoT---------6
3.1 LTE RA procedure--------------------------------6
3.2 NB-IoT RA procedure-----------------------------7
3.2.1 Preprocedure----------------------------------9
3.2.2 Message 1 (Preambles transmission)------------9
3.2.3 Message 2 (Random Access Response)-----------10
3.2.4 Message 3 (Request the Connection)-----------11
3.2.5 Message 4 (Contention Resolution)------------11
4 NS-3 LTE RA procedure----------------------------13
4.1 Preprocedure-----------------------------------13
4.2 Message 1 (Preambles transmission)-------------15
4.3 Message 2 (Random Access Response)-------------16
4.4 Message 3 (Request the Connection)-------------16
4.5 Message 4 (Contention Resolution)--------------18
5 NS-3 LTE MODULE ADJUSTMENTS----------------------19
5.1 Preprocedure-----------------------------------20
5.1.1 RSRP changes---------------------------------20
5.1.2 SIB2 reconfiguration-------------------------21
5.1.3 Thresholds definition and CE level judgment--27
5.2 Message 1 : Preambles transmission-------------29
5.3 Message 2 : Random Access Response-------------30
5.4 Message 3 : Request the Connection-------------32
5.5 Message 4 : Contention Resolution--------------32
6 VALIDATION---------------------------------------33
6.1 Experimental setup-----------------------------33
6.2 Simulation result------------------------------36
6.2.1 Average access delay evaluation--------------36
6.2.2 Outage probability evaluation----------------38
6.2.3 Simulation correctness evaluation------------41
7 CONCLUSIONS--------------------------------------44
[1] Ericsson, “Cellular networks for massive iot-enabling low power wide area applications,white paper,” 2014.
[2] A. Laya, L. Alonso, and J. Alonso-Zarate, “Is the random access channel of lte and lte-a suitable for m2m communications? a survey of alternatives,” IEEE Communications Surveys Tutorials, vol. 16, pp. 4–16, First 2014.
[3] R. Ratasuk, N. Mangalvedhe, Y. Zhang, M. Robert, and J. P. Koskinen, “Overview of narrowband iot in lte rel-13,” in 2016 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 1–7, Oct 2016.
[4] 3GPP, “ New Work Item: NarrowBand IOT (NB-IOT). TSG RAN Meeting #69, 3rd Generation Partnership Project (3GPP),” Tech. Rep. 3G RP 151621, 3GPP, 2015.
[5] C. Hoymann, D. Astely, M. Stattin, G. Wikstrom, J. F. Cheng, A. Hoglund, M. Frenne, R. Blasco, J. Huschke, and F. Gunnarsson, “Lte release 14 outlook,” IEEE Communications Magazine, vol. 54, pp. 44–49, June 2016.
[6] A. Rico-Alvarino, M. Vajapeyam, H. Xu, X. Wang, Y. Blankenship, J. Bergman, T. Tirronen, and E. Yavuz, “An overview of 3gpp enhancements on machine to machine communications,” IEEE Communications Magazine, vol. 54, pp. 14–21, June
2016.
[7] Y. P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman, and H. S. Razaghi, “A primer on 3gpp narrowband internet of things,” IEEE Communications Magazine, vol. 55, pp. 117–123, March 2017.
[8] A. R. Khan, S. M. Bilal, and M. Othman, “A performance comparison of open source network simulators for wireless networks,” in 2012 IEEE International Conference on Control System, Computing and Engineering, pp. 34–38, Nov 2012.
[9] N. Baldo, M. Miozzo, M. Requena-Esteso, and J. Nin-Guerrero, “An open source product-oriented lte network simulator based on ns-3,” in Proceedings of the 14th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM ’11, (New York, NY, USA), pp. 293–298, ACM, 2011.
[10] S. Martiradonna, A. Grassi, G. Piro, L. A. Grieco, and G.Boggia, “An open source platform for exploring nb-iot system performance,” in European Wireless 2018; 24th European Wireless Conference, pp. 1–6, May 2018.
[11] A. Puschmann, P. D. Sutton, and I. Gómez, “Implementing nb-iot in software - experiences using the srslte library,” CoRR, vol. abs/1705.03529, 2017.
[12] Y. Miao, W. Li, D. Tian, M. S. Hossain, and M. F. Alhamid, “Narrow band internet of things: Simulation and modelling,” IEEE Internet of Things Journal, pp. 1–1, 2017.
[13] R. Harwahyu, R. G. Cheng, and C. H.Wei, “Investigating the performance of the random access channel in nb-iot,” in 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–5, Sept 2017.
[14] R. Harwahyu, R. G. Cheng, C. H. Wei, and R. F. Sari, “Optimization of random access channel in nb-iot,” IEEE Internet of Things Journal, vol. 5, pp. 391–402, Feb 2018.
[15] N. Jiang, Y. Deng, M. Condoluci, W. Guo, A. Nallanathan, and M. Dohler, “Rach preamble repetition in nb-iot network,” IEEE Communications Letters, vol. 22, pp. 1244–1247, June 2018.
[16] X. Lin, A. Adhikary, and Y. P. E. Wang, “Random access preamble design and detection for 3gpp narrowband iot systems,” IEEE Wireless Communications Letters, vol. 5, pp. 640–643, Dec 2016.
[17] Y. Sun, F. Tong, Z. Zhang, and S. He, “Throughput modeling and analysis of random access in narrowband internet of things,” IEEE Internet of Things Journal, vol. 5, pp. 1485–1493, June 2018.
[18] Y. Kim, K. Moon, and T.-J. Lee, “Enhanced random access method with a coverage level and subcarrier spacing in nb-iot systems,” in Proceedings of the 2017 International Conference on Information Technology, ICIT 2017, (New York, NY, USA), pp. 292–296, ACM, 2017.
[19] S. Foni, T. Pecorella, R. Fantacci, C. Carlini, P. Obino, and M. G. D. Benedetto, “Evaluation methodologies for the nb-iot system: Issues and ongoing efforts,” in 2017 AEIT International Annual Conference, pp. 1–6, Sept 2017.
[20] 3GPP, “3rd Generation Partnership Project; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (EUTRAN); ,” Tech. Rep. 3G TS 36.300, 3GPP, April 2017.
[21] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); ,” Tech. Rep. 3G TS 24.301, 3GPP, June 2018.
[22] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (Release 15) ,” Tech. Rep. 3G TS 36.321,
3GPP, March 2018.
[23] “ns-3 lte module design documentation.”
[24] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 15),” Tech. Rep. 3G TS 36.211, 3GPP, March 2018.
[25] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Require ments for support of radio resource management (Release 15),” Tech. Rep. 3G TS
36.133, 3GPP, March 2018.
[26] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification (Release 13),” Tech. Rep. 3G TS 36.331,
3GPP, April 2018.
[27] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 15) ,” Tech. Rep. 3G TS 36.213, 3GPP, March 2018.
[28] 3GPP, “3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Cellular system support for ultra-low complexity and low throughput Internet of Things (CIoT) (Release 13) ,” Tech. Rep. 3G TR 45.820, 3GPP, November 2015.
[29] M. Polese, M. Centenaro, A. Zanella, and M. Zorzi, “M2M Massive Access in LTE: RACH Performance Evaluation in a Smart City Scenario,” ArXiv e-prints, Jan. 2016.
[30] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on RAN Improvements for Machine-type Communications; (Release 11),” Tech. Rep. 3G TR 37.868, 3GPP, September 2011.
[31] C. Kalalas, F. Vazquez-Gallego, and J. Alonso-Zarate, “Performance evaluation of the contention-based random access of lte under smart grid traffic,” in Smart Grid Inspired Future Technologies (E. T. Lau, M. K. Chai, Y. Chen, O. Jung, V. C. Leung,
K. Yang, S. Bessler, J. Loo, and T. Nakayama, eds.), (Cham), pp. 172–181, Springer International Publishing, 2017.
[32] M. S. Ali, E. Hossain, and D. I. Kim, “Lte/lte-a random access for massive machinetype communications in smart cities,” IEEE Communications Magazine, vol. 55, pp. 76–83, January 2017.
(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *