帳號:guest(18.218.6.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):維薩爾萊
作者(外文):Rai, Vishal
論文名稱(中文):具功率因數修正之直接數位控制LCL三相三線轉換器
論文名稱(外文):Decoupled Direct Digital Control Based Three-Phase Three-Wire Converter with LCL Filters for Power-Factor Correction
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):潘晴財
鄭博泰
口試委員(外文):PAN, CHING-TSAI
CHENG, PO-TAI
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061709
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:75
中文關鍵詞:分切合整(D-Σ)解耦型直接數位控制三相轉換器電感變化重複控制LCL濾波器直流電壓調節和比例-積分控制
外文關鍵詞:Division-summation (D-Σ)PI ControlDecoupled direct digital controlThree-phase converterLCL-filterDC-link voltage regulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:534
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
這篇論文主要為以分切合整解耦數位控制來實現LCL濾波型三相三線轉換器,因為LCL濾波器有著較好的切換漣波衰減特性。在這篇論文中,三相轉換器操作在整流模式;此外,以諧振頻率為基底設計LCL濾波器。採用比例-積分控制來穩直流鏈電壓。除了主要的控制之外,本研究還使用零序空間向量脈衝寬度調製(SVPWM)。

為了減少電網電流諧波,本文提出了一種基於「直接數位控制」的LCL濾波器設計和控制方法的改進。該系統工作在整流模式,具有功率因數校正和直流鏈電壓調節功能。透過解耦合直接數位控制,不需要經由abc到d-q軸變換,並且控制法則可以通過一個開關週期內的電感器電流變化來決定。因此,在考慮電感變化的同時,可以將轉換器視為電流源。所以說,可以直接發出電流命令以補償失真的電流波形。本控制以微控制器Renesas RX62T做為系統的控制核心,即使在有限的電網阻抗和電網電壓諧波下,轉換器也可以準確地對電網電流進行調整。所提出的設計和控制方法已經使用MATLAB Simulink模擬驗證,並以12 kW三相三線轉換器操作在整流模式下所量測的實驗結果進行了驗證。

本研究的主要貢獻可概括為:(1)可以納入電網電壓諧波成分並進行功率因數校正,(2)可以調節直流鏈電壓,便於未來結合綠色能源發電系統,例如:太陽能發電和風力發電,(3)本研究提出了以分切合整(D-Σ)方法所推導之解耦合直接數位控制法則,它改良了傳統直接數位控制法則,(4)本研究還提出了基於諧振頻率的LCL濾波器設計。
This thesis presents a decoupled direct digital control with division-summation (D-Σ) processes for a three-phase three-wire (3Φ3W) converter with LCL filters. LCL filters have better switching-ripple attenuation at a reduced cost. In this thesis, control of a three-phase converter in rectification mode, the design of LCL filters based on resonant frequency and a dc-link voltage regulation method using PI control have been explored. This research uses the positive sequence Space Vector Pulse Width Modulation (SVPWM) in addition to the main control laws.

To reduce grid current harmonics, this thesis presents an improvement of LCL filter design and control method based on direct digital control. The system operates in rectification mode with power-factor correction and dc-link voltage regulation. With the decoupled direct digital control, there is no need of abc to d-q frame transformation, and control laws can be directly determined by inductor current variations over one switching period. Therefore, a converter can be regarded as a current source while considering inductance variation. As a result, current commands can be issued directly to compensate distorted current waveforms. The microcontroller Renesas RX62T is used for the control center of the system. The converter can shape the grid current sinusoidally even under finite grid impedance and grid-voltage harmonics. The proposed design and control methods have been verified through simulation using MATLAB Simulink and through experimental results measured from a 12 kW 3Φ3W converter in rectification mode with LCL filters.

The major contributions of this research can be summarized as: it can accommodate the harmonic components present in the grid voltages and conduct power-factor correction. It can regulate dc-link voltage and incorporate green power, such as solar and wind power in the future. Moreover, this research presents the decoupled direct digital control with division-summation (D-Σ) processes, which is an improved version of the conventional direct digital control. Moreover, this research also presents the design of LCL filters based on resonant frequency.
摘要 i
ABSTRACT ii
ACKNOWLEDGMENTS iii
List of Figures viii-x
List of Tables xi

CHAPTER 1. INTRODUCTION 1

1.1 Motivation 1
1.2 Review of Power-Factor Correction 2
1.2.1 Power-Factor Correction 3

CHAPTER 2. HARDWARE ARCHITECTURE AND CONTROL STRATEGIES 9

2.1 Hardware Architecture 9
2.2 Direct Digital Control 10
2.3 Basic Direct Digital Control Law 10
2.4 Improvement of Direct Digital Control Law 12
2.4.1 Decoupled Direct Digital Control with D-Σ Processes 12
2.5 DC-Link Voltage Regulation Method 17

CHAPTER 3. FIRMWARE PLANNING AND PROGRAM FLOW 19

3.1 Introduction to Microcontroller 19
3.2 Firmware Planning and Program Flow 22
3.2.1 Main Program Flow 22
3.2.2 A/D Interrupt Subprogram Flow 23
3.2.3 Dead Time Compensation 25
3.2.4 DC-Link Voltage Regulation Flow 27

CHAPTER 4. PERIPHERAL CIRCUITS 28

4.1 Auxiliary Power Supply 28
4.2 Driver Circuit for Switches 29
4.3 DC-Link Voltage Feedback Circuit 31
4.4 AC Voltage Feedback Circuit 32
4.5 Inductor Current Feedback Circuit 33
4.6 AC Pre-charge and Relay Circuit 34
4.7 Biased Feedback Circuit for vp 36

CHAPTER 5. SIMULATED AND EXPERIMENTAL RESULTS 38

5.1 Determination of Components 38
5.1.1 DC-Link Capacitor 38
5.1.2 LCL Filter 40
5.2 DC-Link Voltage Regulation 46
5.3 Practical Considerations 47
5.3.1 Inductance Variation 47
5.3.2 Decoupling Capacitor 48
5.3.3 Gate Driver Resistor 49
5.3.4 Switch Driver Voltage 50
5.4 Measured Waveforms 51
5.4.1 DC-Link Voltage Regulation 51
5.4.2 Power-Factor Correction 56

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 71

6.1 Conclusions 71
6.2 Future Research 71

REFERENCES 74
REFERENCES

[1] S. M. Halpin, "Harmonic limits in IEEE Std. 519: From recommendations to requirements," 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, 2008, pp. 1-2.

[2] A. Prudenzi, U. Grasselli and R. Lamedica, "IEC Std. 61000-3-2 harmonic current emission limits in practical systems: need of considering loading level and attenuation effects," 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262), Vancouver, BC, Canada, 2001, pp. 277-282 vol.1.

[3] D. R. Joca, L. H. S. C. Barreto, D. de S. Oliveira, P. P. Praça, R. N. A. L. Silva and G. A. L. Henn, "THD analysis of a modulation technique applied for THD reduction," 2013 Brazilian Power Electronics Conference, Gramado, 2013, pp. 177-182.

[4] 2018 Taiwan Power Company Sustainability Report.

[5] P. R. Mohanty, A. K. Panda and D. Das, "An active PFC boost converter topology for power factor correction," 2015 Annual IEEE India Conference (INDICON), New Delhi, 2015, pp. 1-5.

[6] M. P. S. Gryning, Q.-Wu, M. Blanke, H. H. Niemann, and K. P. H. Andersen, "Wind Turbine Inverter Robust Loop-Shaping Control Subject to Grid Interaction Effects," IEEE Transactions on Sustainable Energy, vol. 7, no. 1, pp. 41-50, Jan. 2016.

[7] J. Castelló, J. M. Espí and R. García-Gil, "A New Generalized Robust Predictive Current Control for Grid-Connected Inverters Compensates Anti-Aliasing Filters Delay," IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4485-4494, July 2016.

[8] J. He, Y.-W. Li, D. Xu, X. Liang, B. Liang, and C. Wang, "Deadbeat Weighted Average Current Control With Corrective Feed-Forward Compensation for Microgrid Converters With Nonstandard LCL Filter," IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 2661-2674, April 2017-4.

[9] E. Tomaszewski and J. Jiangy, "An Anti-Windup Scheme for Proportional Resonant controllers with tuneable phase-shift in Voltage Source Converters," 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, 2016, pp. 1-5.

[10] D. Stojić, M. Milinković, S. Veinović and I. Klasnić, "Novel proportional-integral-resonant current controller for three phase PWM converters," 2016 4th International Symposium on Environmental Friendly Energies and Applications (EFEA), Belgrade, 2016, pp. 1-4.

[11] L. Dan-Yun, S. Qun-Tai, L. Zhen-Tao and W. Hui, "Repetitive control of the stator-side four-leg converter in stand-alone DFIG-based wind energy conversion system," 2015 34th Chinese Control Conference (CCC), Hangzhou, 2015, pp. 5795-5798.

[12] X. Zheng, K. Qiu, L. Hou, Z. Liu, and C. Wang, "Sliding-mode control for grid-connected inverter with a passive damped LCL filter," 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 2018, pp. 739-744.

[13] Xiaoqin Zhou and Longfei Hu, "An improved adaptive feedforward cancellation for tool trajectory tracking in diamond turning of freeform optics," 2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, 2010, pp. 3590-3593.

[14] M. G. Judewicz, S. A. González, J. R. Fischer, J. F. Martínez, and D. O. Carrica, "Inverter-Side Current Control of Grid-Connected Voltage Source Inverters with LCL Filter based on Generalized Predictive Control," IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, Early Access.

[15] Y. He, H. S. H. Chung, C. N. M. Ho, and W. Wu, "Use of Boundary Control With Second-Order Switching Surface to Reduce the System Order for Deadbeat Controller in Grid-Connected Inverter," IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2638-2653, March 2016.Magnetic Powder Cores-Product Catalog of Chang Sung Corporation, Ver. 12.

[16] T.-F. Wu, H.-C. Hsieh, C.-H. Chang, L.-C. Lin, and Y.-R. Chang, "Improvement of Control Law Derivation and Region Selection for ${D}{-}\Sigma$ Digital Control," IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6042-6050, Oct. 2015.

[17] T.-F. Wu, Y.-Y. Chang, C.-H. Chang, and T.-C. Zou, Y.-R. Chang, “SPWM-Based D-Σ Digital Control for Paralleled 3-ϕ Grid-Connected Inverters,” ECCE 2015, pp. 6818-6824, Sept. 2015.

[18] T.-F. Wu, M. Misra, Y.-Y. Jhang, Y.-H. Huang, and L.-C. Lin, "Direct Digital Control of Single-Phase Grid-Connected Inverters with LCL Filter Based on Inductance Estimation Model," IEEE Transactions on Power Electronics, 2018, Early Access.

[19] T. Suyata and S. Po-Ngam, "Simplified active power and reactive power control with MPPT for three-phase grid-connected photovoltaic inverters," 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Nakhon Ratchasima, 2014, pp. 1-4.

[20] Current transducers LAX SERIES, LAX 100-NP, LEM Datasheet.

[21] X. Zhang, J. W. Spencer, and J. M. Guerrero, “Small-Signal
Modeling of Digitally Controlled Grid-Connected Inverters With LCL Filters,” IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3752–3765, Sept 2013.

[22] M. Liserre, F. Blaabjerg, and S. Hansen, “Design and control of an LCL-filter-based three-phase active rectifier,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1281–1291, Sep. 2005.

[23] “IEEE Standard Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems,” IEEE Std 1547.1-2005, pp. 1–62, July 2005.

[24] C2M0025120D Silicon Carbide Power MOSFET datasheet.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *