帳號:guest(3.137.219.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐寅棋
作者(外文):Xu, Yin-Qi
論文名稱(中文):電子馬達模擬器與電能回收系統整合研究
論文名稱(外文):Design and Implementation of Electric Motor Emulator and Power Recycling System
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):潘晴財
林法正
邱煌仁
口試委員(外文):Pan, Ching-Tsai
Lin, Faa-Jeng
Chiu, Huang-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061703
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:93
中文關鍵詞:電子馬達模擬器電子負載三相三線全橋式轉換器分切合整數位控 制負載電流估測
外文關鍵詞:Electric Motor Emulatorelectronic loadthree-phase three-wire converterD-Σ digital controlload current estimation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:265
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為測試馬達驅動器輸出功率、電流追蹤及頻率控制之能力,本研究研製一部電子馬達模擬器,做為模擬永磁式伺服馬達反電動勢特性之電子負載。透過微控制器、回授級電路及功率級電路,來偵測馬達驅動器輸出電流且由電子馬達模擬器輸出相對應之反電動勢,並搭配一台雙向轉換器,將輸入至電子馬達模擬器之功率回送至市電端,以實現能源回收,達到節能之目的。電子馬達模擬器採用三相三線全橋式架構,並以微控制器Renesas RX62T做為控制核心。
在運轉模式下,轉換器採用分切合整數位控制法則,並結合空間向量調變以實現回授控制。與傳統類比控制法相比,分切合整數位控制法則將系統參數變化,如直流鏈電壓、交流輸出電壓、電感值和切換週期等皆納入考量,抵消參數變化對於受控體之影響,並直接計算出開關責任比率。本系統為能輸出穩定之三相弦波,在分切合整控制法則中加入負載電流估測,透過預估每一切換週期之負載端電感電流與電容電流變化量,並將其加入控制法則中。
最後,再以模擬驗證控制法之可行性,並實測其功能。本研究以模擬真實馬達來設計轉換器,為驗證各項馬達之特性,因此在測試方面有額定功率測試、大電流測試及高頻測試。另外,為達到節能之目的,本研究提出功率硬體循環測試,透過雙向轉換器將功率回送至市電端,因此在執行各項測試時,僅有少許真實功率消耗。
此次研究主要貢獻為:(1) 在測試馬達驅動器時不需連接真實馬達,並可透過更改內部參數來模擬不同馬達之特性,(2) 因搭配雙向轉換器,能將能量回送至電源端,達到能量回收之功能,減少在測試時之功率消耗,(3) 在分切合整數位控制法則中加入負載電流估測法,使系統能準確模擬真實馬達之反電動勢。
關鍵字:電子馬達模擬器、電子負載、三相三線全橋式轉換器、分切合整數位控 制、負載電流估測
In order to test the output rating, current tracking ability, and frequency control capability of motor drives, this research develops an Electric Motor Emulator (EME) as an electronic load. It simulates the back-emf characteristics of permanent magnet serve motors. It can sense the output current of motor drive and output back EMF which corresponds to the output current through the microcontroller, feedback circuit and power circuit. EME can send the input power back to the source side by connecting a bi-directional inverter. It could achieve power circulation and power conservation. EME applies a three-phase three-wire full-bridge converter topology, and the microcontroller Renesas RX62T is selected as the control center of the systems.
In normal mode, the converter adopts the division-summation (D-Σ) digital control law with space vector pulse width modulation (SVPWM). Compared with the original analog control, the D-Σ digital control takes into account the system parameter variations, such as dc link voltage, ac output voltage, inductance value, and switching period, to mitigate the influence of parameter variation on the plant, and calculates the duty ratio directly.
In order to stabilize the three-phase output voltage of the EME, load current estimation is included in the D-Σ digital control. In the load current estimation, the filter capacitor current variations and load current variations can be predicted in each switching period.
Finally, feasibilities of the control law and the functions of the EME system are verified by the simulated and experimental results. In the research, we design the converter on the basis of real motor mechanism. Power testing, high current testing and high frequency testing verified the various characteristics of the motor. In addition, we present the Power Hardware In the Loop (PHIL) test for power conservation. Hence, power consumption is reduced during various tests.
The main contributions of this research include: (1) EME can simulate multiple characteristics of motors with different sets of internal parameters, and no real motor is required while testing. (2) EME can transfer the testing power back to the grid be-cause of connecting a bi-directional inverter. This power circulation system is capable of reducing the power consumption in the experiment. (3) Adding the load current estimation into D-Σ digital control law allows the system to simulate back EMF of a real motor accurately.
Keywords: Electric Motor Emulator, electronic load, three-phase three-wire converter, D-Σ digital control, load current estimation
目錄
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 2
1-2-1 轉換器控制法簡介 2
1-2-2 轉換器拓樸簡介 4
1-3論文大綱 8
第二章 系統架構與控制策略 9
2-1 系統架構 9
2-1-1 電子馬達模擬器架構 10
2-1-2 雙向轉換器架構 11
2-2 分切合整數位控制法則 12
2-3 反電動勢電壓控制法 17
2-3-1 電容電流變化量[15] 19
2-3-2 負載端電感電流變化量[15] 20
第三章 硬體週邊電路 23
3-1 輔助電源電路 23
3-2 保護電路 25
3-2-1電壓箝位保護電路 25
3-2-2 過壓/過流保護電路 26
3-3 電壓/電流回授電路 27
3-3-1 直流鏈電壓回授電路 27
3-3-2 交流電壓回授電路 28
3-3-3 電流回授電路 30
3-4 開關隔離驅動電路 31
第四章 韌體架構與控制流程 33
4-1 韌體架構 33
4-2 微控制器RX62T簡介 34
4-3 馬達模擬器控制流程 38
4-3-1 主程式控制流程 38
4-3-2 類比/數位中斷副程式流程 38
4-3-3 相序偵測副程式流程 42
4-3-4 角度偵測副程式流程 44
4-3-5 頻率偵測副程式流程 45
4-3-6 直流偏壓校正副程式流程 46
4-3-7 電壓控制副函式流程 47
4-4 雙向轉換器控制流程[24] 48
4-4-1 主程式控制流程 48
4-4-2 類比/數位中斷副程式流程 50
第五章 系統模擬與實作驗證 51
5-1 轉換器規格與元件 51
5-2 元件值設計 56
5-2-1 直流匯流排電容設計 56
5-2-2 LCL濾波器元件值設計 57
5-3 實務考量 59
5-3-1 負載側加入LC濾波器 59
5-3-2 電感衰減變化量 60
5-4 Matlab/simulink模擬 61
5-5 模擬與實測波形 63
5-5-1 電子馬達模擬器測試 64
5-5-2 電子馬達模擬器與雙向轉換器整合測試 68
5-5-3 問題與解答 84
第六章 結論與未來展望 86
6-1 結論 86
6-2 未來研究方向 87


圖目錄
圖1.1、重複控制方塊圖 2
圖1.2、PID控制方塊圖 3
圖1.3、三相四線半橋式轉換器拓樸 5
圖2.1、電子馬達模擬系統架構 9
圖2.2、電子馬達模擬器架構圖 10
圖2.3、雙向轉換器系統架構圖 11
圖2.4、電子馬達模擬器與雙向轉換器結合之架構 12
圖2.5、三相三線全橋換流器電路圖 13
圖2.6、R相等效電路圖 14
圖2.7、上臂導通、下臂截止等效電路圖 15
圖2.8、下臂導通、上臂截止等效電路圖 16
圖2.9、等效單相換流器輸出端電路圖 18
圖2.10、伺服馬達等效電路 22
圖2.11、電子馬達模擬器等效電路 22
圖3.1、輔助電源電路圖 24
圖3.2、LRS-200-24內部方塊圖[17] 24
圖3.3、DCW05B-15腳位置圖[18] 24
圖3.4、SCW03B-05腳位置圖[19] 25
圖3.5、電壓箝位保護電路 26
圖3.6、過壓/過流保護電路 26
圖3.7、直流鏈電壓回授電路 27
圖3.8、交流電壓回授電路 28
圖3.9、交流電壓回授電路各點輸出波形圖 29
圖3.10、電流回授電路圖 30
圖3.11、開關隔離驅動器電路圖 31
圖3.12、閘極驅動IC內部電路[22] 32
圖4.1、功率硬體循環測試之電力級與控制級電路架構圖 34
圖4.2、RX62T PLQP0112JA-A腳位配置圖[23] 35
圖4.3、馬達模擬器主程式控制流程圖 38
圖4.4、數位/類比中斷流程圖 40
圖4.5、Startup Mode等效電路圖 41
圖4.6、工作模式流程圖 42
圖4.7、相位偵測副程式流程圖 43
圖4.8、相位與相序關係圖 43
圖4.9、角度偵測流程圖 44
圖4.10、克拉克(Clarke)座標軸轉換及電機角位置關係圖 45
圖4.11、頻率偵測流程圖 46
圖4.12、直流偏壓校正流程圖 47
圖4.13、電壓控制流程圖 48
圖4.14、雙向轉換器主程式流程圖 49
圖4.15、類比/數位中斷副程式控制流程圖 50
圖5.1、電子馬達模擬器直流匯流排 52
圖5.2、LCL濾波器電路圖 53
圖5.3、電子馬達模擬器每相濾波器電容 53
圖5.4雙向轉換器直流匯流排 54
圖5.5、雙向轉換器濾波電容 54
圖5.6、功率硬體循環系統架構圖 55
圖5.7、LCL電路架構 58
圖5.8、L L濾波器電路圖 60
圖5.9、不同導磁係數之鐵芯Mega Flux導磁率變化特性圖[26] 61
圖5.10、電子馬達模擬器測式架構 62
圖5.11、電子馬達模擬器電路架構 62
圖5.12、L L濾波器模擬電路方塊 63
圖5.13、量測位置圖 63
圖5.14、角度偵測10 Hz 64
圖5.15、角度偵測30 Hz 65
圖5.16、角度偵測50 Hz 65
圖5.17、頻率偵測10 Hz 66
圖5.18、頻率偵測20 Hz 67
圖5.19、頻率偵測25 Hz 67
圖5.20、模擬功率測試15 kW@225 Hz波形 69
圖5.21、電子馬達模擬器功率測試15 kW@225 Hz波形 69
圖5.22、模擬功率測試25 kW@225 Hz波形 70
圖5.23、電子馬達模擬器功率測試25 kW@225 Hz 70
圖5.24、模擬功率測試35 kW@225 Hz波形 71
圖5.25、電子馬達模擬器功率測試35 kW@225 Hz 71
圖5.26、電子馬達模擬器功率測試15 kW@225 Hz效率圖 72
圖5.27、電子馬達模擬器功率測試25 kW_225 Hz效率圖 72
圖5.28、電子馬達模擬器功率測試35 kW@225 Hz效率圖 73
圖5.29、雙向轉換器功率測試15kW 74
圖5.30、雙向轉換器功率測試25kW 74
圖5.31、雙向轉換器功率測試35kW 75
圖5.32、電子馬達模擬器電流測試85 A@70 Hz 76
圖5.33、電子馬達模擬器電流測試85 A@70 Hz 76
圖5.34、電子馬達模擬器電流測試120 A@70 Hz 77
圖5.35、電子馬達模擬器電流測試120 A@70 Hz 77
圖5.36、電子馬達模擬器電流測試150 A@70 Hz 78
圖5.37、電子馬達模擬器電流測試150 A@70 Hz 78
圖5.38、電子馬達模擬器頻率測試400Hz@25A 80
圖5.39、電子馬達模擬器頻率測試400Hz@25A 80
圖5.40、電子馬達模擬器頻率測試600Hz@25A 81
圖5.41、電子馬達模擬器頻率測試600Hz@25A 81
圖5.42、電子馬達模擬器頻率測試800Hz@25A 82
圖5.43、電子馬達模擬器頻率測試800Hz@25A 82
圖5.44、電子馬達模擬系統實際硬體電路正面 83
圖5.45、電子馬達模擬系統實際硬體電路背面 83
圖5.46、電壓回授電路 85
圖5.47、交流/直流回授等效電路圖 85
圖5.48、隔離型電壓回授電路圖 85


表目錄
表4.1、RX62T群組微控制器規格[23] 36
表5.1、電子馬達模擬器規格 51
表5.2、雙向轉換器規格 52
表5.3、電子馬達模擬器元件參數及型號 53
表5.4、雙向轉換器元件參數及型號 55
表5.5、電子馬達模擬器功率及效率比較 73
表5.6、雙向轉換器功率及效率比較 75

參考文獻
[1] M. Bosworth, D. Soto, M. Sloderbeck, J. Hauer, and M. Steurer, "MW-scale power hardware-in-the-loop experiments of rapid power transfers in MVDC naval shipboard power systems," 2015 IEEE Electric Ship Technologies Symposium (ESTS), Alexandria, VA, 2015, pp. 459-463.
[2] M. Wu, B. Xu, W. Cao, and J. She, “Aperiodic Disturbance Rejection in Repetitive-Control Systems,” in IEEE Transactions on Control Systems Technology, vol. 22, no. 3, pp. 1044-1051, May 2014.
[3] D. Chen, J. Zhang and Z. Qian, “An Improved Repetitive Control Scheme for Grid-Connected Inverter with Frequency-Adaptive Capability,” in IEEE Transactions on Industrial Electronics, vol. 60, no. 2, pp. 814-823, Feb. 2013.
[4] Z. Zhang, L. Fickert and Y. Zhang, "Power hardware-in-the-loop test for cyber physical renewable energy infeed: Retroactive effects and an optimized power Hardware-in-the-Loop interface algorithm," 2016 17th International Scientific Conference on Electric Power Engineering (EPE), Prague, 2016, pp. 1-6.
[5] T. Doh and J. R. Ryoo, “Robust repetitive controller design and its application on the track-following control system in optical disk drives,” 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, pp. 1644-1649, 2011.
[6] 王星翰,具強健性之重複控制器應用於直流至交流轉換器,國立中山大學電機工程學系碩士論文,民國101年8月。
[7] P. R. Ouyang, V. Pano and T. Dam, “PID contour tracking control in position domain,” 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, pp. 1297-1302, 2012.
[8] W. Yu and X. Li, “Stable PID control for robot manipulators with neural compensation,” 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, pp. 5398-5403, 2012.
[9] K. H. Ang, G. Chong and Yun Li, “PID control system analysis, design, and technology,” in IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 559-576, July 2005.
[10] J. De Kooning, B. Meersman, T. Vandoorn, B. Renders, and L. Vandevelde, "Comparison of three-phase four-wire converters for distributed generation," 45th International Universities Power Engineering Conference UPEC2010, Cardiff, Wales, 2010, pp. 1-6.
[11] C. Liu, K. Dai, K. Duan, X. Wang, and Y. Kang, "Application of an LLCL filter on three-phase three-wire shunt active power filter," Intelec 2012, Scottsdale, AZ, 2012, pp. 1-5.
[12] 王鈞平,分切合整數位控制100kVA多功能轉換器研製,國立清華大學電機工程研究所碩士論文,民國105年7月。
[13] 陳至鈞,三項三縣式20kW雙向換流器研製,國立中正大學電機工程研究所碩士論文,2012年7月。
[14] 曾柏唐,分切合整數位控制並聯三相併網型系統,國立清華大學碩士論文,2017年7月。
[15] 林庭鴻,高功率三相不斷電系統與IGBT開關模組驅動電路研製,國立清華大學碩士論文,2018年7月。
[16] T. F. Wu, Y. H. Huang, Y. T. Liu, and M. Misra, "Decoupled Direct Digital Control with D-Σ Process and Average Common-Mode Voltage Model for 3Φ3W LCL Converters",2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim Convention Center 800 W Katella Ave Anaheim, CA, USA, 2019, Early Access
[17] Mean Well, LRS-200 Series Datasheet.
[18] Mean Well, DCW05 Series Datasheet.
[19] Mean Well, DCW03 Series Datasheet.
[20] LEM, HTB Series Datasheet.
[21] Motorola, 74HC244 Datasheet.
[22] Infineon, 1EDI60N12AF Datasheet.
[23] Renesas Electronics, RX62T/62G Group Datasheet, Jan. 2014.
[24] 劉昀宗,三相高功率並聯式主動電力濾波器研製與驗證,國立清華大學碩士論文,2018年7月。
[25] CREE, CAS300M12BM2 Datasheet.
[26] CSC,MAGNETIC POWDER CORES Datasheet
[27] X. Yin and Y. Wang, "Permanent magnet synchronous motor emulator," IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, 2017, pp. 4160-4164
[28] Y. Tianpeng, Z. Siyu and L. Jinliang, "The parameters selection of simulation environment device in the hardware-in-the-loop system," 2015 34th Chinese Control Conference (CCC), Hangzhou, 2015, pp. 8914-8919.
[29] J. Wang, Y. Ma, L. Yang, L. M. Tolbert and F. Wang, "Power converter-based three-phase induction motor load emulator," 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 2013, pp. 3270-3274.
[30] M. A. Masadeh and P. Pillay, "Power electronic converter-based three-phase induction motor emulator," 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, 2016, pp. 1-5.
[31] P. K. Gujarathi and M. V. Aware, "Hardware-in-Loop Simulation of Direct Torque Controlled Induction Motor," 2006 International Conference on Power Electronic, Drives and Energy Systems, New Delhi, 2006, pp. 1-5.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *