帳號:guest(18.116.37.31)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭家均
作者(外文):Guo, Jia-Jun
論文名稱(中文):應用於混沌光達系統之低複雜度深度感知演算法與架構設計
論文名稱(外文):Low-complexity Depth-sensing Algorithm and Architecture Design for Chaotic LiDAR System
指導教授(中文):黃元豪
指導教授(外文):Huang, Yuan-Hao
口試委員(中文):林凡異
邱瀞德
黃柏鈞
口試委員(外文):Lin, Fan-Yi
Chiu, Ching-Te
Huang, Po-Chiun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061616
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:58
中文關鍵詞:光達深度感測局部搜索
外文關鍵詞:LiDARDepth SensingLocal Search
相關次數:
  • 推薦推薦:0
  • 點閱點閱:332
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
光達是一種廣泛應用在大地測量學、大氣物理學,以及自動駕駛車的遙測技術。光達以雷射光照射物體並由光波傳送到接收的時間差,亦即飛行時間,以及光速來推算目標物的深度。在眾多種類的光達系統中,混沌光達系統因其傳送波強度隨時間的變化類似雜訊而能透過計算參考訊號和目標訊號的相關性來推算飛行時間,因此最為廣泛應用。然而,系統的運算複雜度會隨著偵測距離及傳送訊號的長度而增大,這現象是混沌光達系統中頗受關注的議題。因此,這個研究提出一個應用在混沌光達系統的深度感測的低複雜度演算法。本篇論文提出的演算法能在極少的表現損失下減少運算複雜度到原本演算法的百分之十五。而時差測距模組的硬體架構設計也會在本篇論文提出,此論文提出的演算法能降低硬體架構的功率消耗。
LiDAR, Light Detection and Ranging, is a remote-sensing technique applied generally to geodesy, atmospheric physics and even autonomous cars. The approach for depth- sensing of LiDAR systems is illuminating the target with laser signal and deriving the time difference, named time of flight (TOF), between the reflected signal (target signal) and the transmitted one (reference signal). Among numerical kinds of LiDAR systems, the chaotic LiDAR (CLiDAR) system is used most commonly for its noise-like wave- form beams which enable us to find the time of flight simply by correlating the target signal with the reference one. Nevertheless, the amount of computation increases with the extension of the detectable range and the length of the signal. The phenomenon is a concerned issue of CLiDAR. Therefore, the study proposed a low-complexity al- gorithm for depth sensing of CLiDAR. The proposed algorithm reduces the amount of computation to 15% of the traditional one with tiny loss of performance. The hardware of the time-of-flight calculation unit is implemented in this research, and the proposed algorithm can reduce its power consumption.
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Chaotic LiDAR System . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Depth Sensing Algorithm of Chaotic LiDAR . . . . . . . . . . . . . . . 7
2.1 Determination of Time of Flight . . . . . . . . . . . . . . . . . . 7
2.1.1 Correlation of Reference and Target Signal . . . . . . . . . . . . 8
2.1.2 Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . .10
2.2 Depth Sensing Algorithm of Chaotic LiDAR . . . . . . . . . . . . . .15
3 Proposed Local-search Algorithm for Chaotic LiDAR . . . . . . . . . .19
3.1 Proposed Depth Sensing Algorithm for Chaotic LiDAR . . . . . . . . .19
3.1.1 Spline Interpolation to the Maximum-value Segment . . . . . . . .19
3.1.2 Depth Sensing by Local Search with Moving Averaged Threshold . . .24
3.2 Computational Complexity Analysis . . . . . . . . . . . . . . . . .29
3.2.1 Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . .29
3.2.2 Traditional Depth-sensing Algorithm . . . . . . . . . . . . . . .29
3.2.3 Spline Interpolation to the Maximum-value Segment . . . . . . . .30
3.2.4 Proposed Depth-sensing Algorithm . . . . . . . . . . . . . . . . .30
3.3 Simulation Result and Discussion . . . . . . . . . . . . . . . . . .31
3.3.1 Environment Setup . . . . . . . . . . . . . . . . . . . . . . . .32
3.3.2 Simulation Result and Analysis . . . . . . . . . . . . . . . . . .34
4 Architecture Design . . . . . . . . . . . . . . . . . . . . . . . . .41
4.1 Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . .41
4.1.1 Correlation Unit . . . . . . . . . . . . . . . . . . . . . . . . .42
4.1.2 Index Selection Unit . . . . . . . . . . . . . . . . . . . . . . .44
4.1.3 Interpolation Unit . . . . . . . . . . . . . . . . . . . . . . . .45
4.2 Timing Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Simulation and Synthesis Result . . . . . . . . . . . . . . . . . . 51
4.3.1 Specification Setup . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.3 Synthesis Result and Throughput Analysis . . . . . . . . . . . . .53
5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

[1] M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Optical Engineering, vol. 40, no. 1, pp. 6442–6450, January 2001.
[2] G. N. Pearson, P. J. Roberts, J. R. Eacock, and M. Harris, “Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications,” Appl. Opt., vol. 41, no. 30, pp. 6442–6450, 2002.
[3] Y. Emery and C. Flesia, “Use of the a1- and the a2-sequences to modulate continuous-wave pseudorandom noise lidar,” Appl. Opt., vol. 37, no. 12, pp. 2238– 2241, 1998.
[4] C. Nagasawa, M. Abo, H. Yamamoto, and O. Uchino, “Random modulation cw lidar using new random sequence,” Appl. Opt., vol. 29, no. 10, pp. 1466–1470, 1990.
[5] F.-Y. Lin and J.-M. Liu, “Chaotic lidar,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no. 5, pp. 991–997, September/October 2004.
[6] S. W. Smith, “The scientist and engineer’s guide to digital signal processing,” in Properties of convolution, 2nd ed. California Technical Publishing, 1999, ch. 7.
[7] J.-D. Chen, “Development of algorithms for high accuracy chaos lidar,” Master’s thesis, National Tsing Hua University, 2017.
[8] T.-C. Chen, Y.-Y. Chen, T.-C. Ma, and L.-G. Chen, “Design and implementation of cubic spline interpolation for spike sorting microsystems,” IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1641–1644, July 2011.
[9] R. Bartels, J. Beatty, and B. Barsky, “Hermite and cubic spline interpolation,” in An introduction to splines for use in computer graphics and geometric modeling, 1st ed. Morgan Kaufmann Publishers, 1987, ch. 3.
[10] D. E. Taylor, “Efficient implementation of cross-correlation in hardware,” Master’s thesis, Norwegian University of Science and Technology, 2014.
[11] VC707 evaluation board for the Virtex-7 FPGA, Xilinx.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *