帳號:guest(18.221.214.175)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):連漢文
作者(外文):Lien, Han-Wen
論文名稱(中文):基於瞬態誘發耳聲傳射與同步自發性耳聲傳射特徵之身份辨識
論文名稱(外文):Person Identification Based on features of Transient Evoked Otoacoustic Emission and Synchronized Spontaneous Otoacoustic Emission
指導教授(中文):劉奕汶
指導教授(外文):Liu, Yi-Wen
口試委員(中文):黃承彬
李沛群
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061610
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:45
中文關鍵詞:瞬態誘發耳聲傳射同步自發性耳聲傳射身份辨識
外文關鍵詞:PersonIdentificationTransientEvokedOtoacousticEmissionSynchronizedSpontaneous
相關次數:
  • 推薦推薦:0
  • 點閱點閱:932
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
目前,耳聲傳射在臨床醫學的應用上,主要為聽力量測。然而,從過去瞬態誘發耳聲傳射(TEOAE)的分析結果,發現同一健康耳在不同量測時間具有一致性及穩定性,可能適合成為生物辨識之工具。本論文研究在能有效的量測健康耳之瞬態誘發耳聲傳射的情況下,分析脈衝響應之後半段訊號是否含有同步自發性耳聲傳射(SSOAE),並從其頻譜及ConceFT觀察是否存在數個特定頻率且穩定震盪的SSOAE。初步觀察後發現不同日期的SSOAE頻譜似乎能保有每個人的獨特性。於是本論文收集19位受測者的耳聲傳射,其中20隻耳朵含有SSOAE,約52.6 %。所以,在特徵萃取上,本研究嘗試開發包含TEOAE及SSOAE之綜合判斷機制,並以K個最近鄰居法(KNN)應用於身分辨識。適當地增添SSOAE作為特徵後,本研究在僅量測15秒的耳聲傳射,其中5位之雙耳皆無SSOAE,身份辨識率約84 %;另外14位皆至少一耳含SSOAE,其辨識率達100 %。另外,利用主成份分析將特徵維度降至17維,整體身份辨識率仍可達97.89 %。未來期望同時量測雙耳之耳聲傳射,並完成為時五秒之量測辨識系統。
Currently, otoacoustic emissions (OAEs) are applied to hearing detection in the clinical medicine. However, the previous analyses show that the transient evoked otoacoustic emission (TEOAE) is also suitable for biometric identification thanks to the consistency and stability of TEOAE across each measurement from the same healthy ear. Under the circumstances that the TEOAE can be effectively measured from the healthy ears, we analyze the second half of the impulse response and examine whether the synchronized spontaneous otoacoustic emissions (SSOAEs) existed. SSOAEs are several weak signals continually oscillating at certain frequencies. We found that SSOAE spectrum seems to preserve their uniqueness at each measurement. Collected from 19 subjects, TEOAEs were measured from both ears of 19 subjects, SSOAEs existed in approximately 52.6% of them (20 over 38 ears). This research is dedicated to developing a general detection scheme that can extract TEOAE and SSOAE as features, and thus realize person identification by utilizing the k-nearest neighbors (KNN) algorithm. Under the condition that measurements only last 15 seconds for the individual, the person identification rate is about 84% for those who lack SSOAEs (5 over 19 subjects), while the person identification rate rises to 100% after adding SSOAEs for the rest (14 over 19 subjects) whose SSOAEs existed in at least one ear. Even if we reduce the feature size to 17 dimensions by principal component analysis (PCA), the person identification rate still remains 97.89 %. In the future, it seems possible to automate all the processes for binaural measurements so that personal identification can be completed in 5 seconds for certain applications.
摘要 I
Abstract II
目錄 III
圖目錄 V
第一章 緒論 1
1.1 耳聲傳射簡介 1
1.2 研究動機 2
1.3 文獻回顧 3
1.4 章節介紹 4
第二章 實驗設備與訊號擷取流程 5
2.1 實驗設備與量測環境 5
2.2 實驗設計與流程 6
第三章 訊號分析方法與結果 8
3.1 訊號分析前處理 8
3.1.1 框取平均(frame averaging) 8
3.1.2 框取中位數(median framing) 13
3.2利用ConceFT分析瞬時頻率 15
3.3機器學習演算法 18
3.3.1 k個最近鄰居法(k-nearest neighbors, KNN) 19
3.3.2 主成份分析(principal component analysis, PCA) 20
第四章 實驗結果分析與討論 21
4.1資料庫建立與訊號分析 21
4.1.1分析受測者TEOAE訊號之結果 21
4.1.2分析受測者SSOAE訊號之結果 23
4.2統計分析與驗證 27
4.2.1統計分析 27
4.2.2 TEOAE與SSOAE訊號之頻譜比較 28
4.3耳朵辨識 29
4.3.1耳朵辨識 30
4.3.2判斷SSOAE訊號之耳朵辨識 32
4.3.3利用PCA降維之耳朵辨識 34
4.4身份辨識 35
4.4.1身份辨識 35
4.4.2判斷SSOAE訊號之身份辨識 36
4.4.3利用PCA降維之身份辨識 38
4.5實驗結果討論 39
第五章 結論與未來發展 40
參考文獻 41
附錄 45
[1] D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A. S. LaMantia, J. O. McNamara, and S. M. Williams. Neuroscience: Third edition. Sinauer Associates, Inc., pp. 287-293, 2004.
[2] R. Fettiplace and C. M. Hackney, "The sensory and motor roles of auditory hair cells," Nature Reviews Neuroscience, vol. 7, no. 1, pp. 19-29, 2006.
[3] D. T. Kemp, "Stimulated acoustic emissions from within the human auditory system," J. Acoust. Soc. Am. Vol. 64, no. 5, pp. 1386-1391, 1978.
[4] C. Bergevin, G. A. Manley, and C. Köppl, "Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms," Proc. Natl. Acad. Sci. Vol. 112, no. 11, pp. 3362-3367, 2015.
[5] D. H. Keefe, M. P. Feeney, L. L. Hunter, and D. F. Fitzpatrick, "Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli," J. Acoust. Soc. Am. Vol. 140, no. 3, pp. 1949-1973, 2016.
[6] W. W. Jedrzejczak, K. J. Blinowska, K. Kochanek, and H. Skarzynski, "Synchronized spontaneous otoacoustic emissions analyzed in a time-frequency domain," J. Acoust. Soc. Am. Vol. 124, no. 6, pp. 3720-3729, 2008.
[7] L. Bian, and S. Chen, "Comparing the optimal signal conditions for recording cubic and quadratic distortion product otoacoustic emissions," J. Acoust. Soc. Am. Vol. 124, no. 6, pp. 3739-3750, 2008.
[8] K. M. Kochanek, L. K. Śliwa, K. Puchacz, and A. Piłka, "Repeatability of transient-evoked otoacoustic emissions in young adults," Med. Sci. Monit.: International Medical Journal of Experimental and Clinical Research, vol. 21, pp 36-43, 2015.
[9] N. J. Grabham, M. A. Swabey, P. Chambers, M. E. Lutman, N. M. White, J. E. Chad, and S. P. Beeby, "An evaluation of otoacoustic emissions as a biometric," IEEE Trans. Info. Foren. Sec. Vol. 8, no. 1, pp. 174-183, 2013.
[10] J. Gao, F. Agrafioti, S. Wang, and D. Hatzinakos, "Transient otoacoustic emissions for biometric recognition," IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP). pp. 2249-2252, March 2012.
[11] Y. Liu and D. Hatzinakos, "Biometric identification based on transient evoked otoacoustic emission," IEEE Int. Symp. Signal Process. Info. Tech. pp. 267-271, December 2013.
[12] E. A. Strickland, E. M. Burns, and A. Tubis, "Incidence of spontaneous otoacoustic emissions in children and infants," J. Acoust. Soc. Am. Vol. 78, no. 3, pp. 931-935, 1985.
[13] D. T. Kemp, "Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea," Archives of otorhinolaryngology, vol. 224, no 1-2, pp. 37-45, 1979.
[14] H. P. Wit, J. C. Langevoort, and R. J. Ritsma, "Frequency spectra of cochlear acoustic emissions ("Kemp-echoes")," J. Acoust. Soc. Am. Vol. 70, no. 2, pp. 437-445, 1981.
[15] E. Zwicker and E. Schloth, "Interrelation of different oto-acoustic emissions," J. Acoust. Soc. Am. Vol. 75, no 4, pp. 1148-1154, 1984.
[16] J. T. Kulawiec and M. S. Orlando, "The contribution of spontaneous otoacoustic emissions to the click evoked otoacoustic emissions," Ear and Hearing, vol. 16, no. 5, pp. 515-520, 1995.
[17] J. Wable and L. Collet, "Can synchronized otoacoustic emissions really be attributed to SOAEs? ," Hear. Res. Vol. 80, no. 2, pp. 141-145, 1994.
[18] J. P. Wilson, "Evidence for a cochlear origin for acoustic re-emissions, threshold fine-structure and tonal tinnitus," Hear. Res. Vol. 2, no. 3-4, pp. 233-252, 1980.
[19] R. Probst, B. L. Lonsbury-Martin, and G. K. Martin, "A review of otoacoustic emissions," J. Acoust. Soc. Am. Vol. 89, no. 5, pp. 2027-2067, 1991.
[20] M. A. Swabey, S. P. Beeby, A. D. Brown, and J. E. Chad, "Using otoacoustic emission as biometric," In Proc. First International Conference on Biometric Authentication, pp. 600-606, 2004.
[21] N. J. Grabham, M. A. Swabey, P. Chambers, M. E. Lutman, N. M. White, J. E. Chad, and S. P. Beeby, "An evaluation of otoacoustic emissions as a biometric," IEEE Trans. Info. Foren. Sec. Vol. 8, no. 1, pp. 174-183, 2013.
[22] C. A. Shera, J. J. Guinan, and A. J. Oxenham, "Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements," Proc. Natl. Acad. Sci. Vol. 99, no. 5, pp. 3318-3323, 2002.
[23] 陳亞函, 「瞬態誘發耳聲傳射測量系統實作與測試」, 國立清華大學, 2016.
[24] I. Daubechies, Y. G. Wang, and H. T. Wu, "ConceFT: concentration of frequency and time via a multitapered synchrosqueezed transform," Phil. Trans. R. Soc. A, vol. 374, no. 2065, 2016.
[25] R. Kalluri and C. A. Shera, "Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions," J. Acoust. Soc. Am. Vol. 121, no. 4, pp. 2097-2110, 2007.
[26] K. A. D. L. Silva, J. G. Urosas, S. G. G. Sanches, and R. M. M. Carvallo, "Wideband reflectance in newborns with present transient-evoked otoacoustic emissions," Communication Disorders, Audiology and Swallowing, vol. 25, no. 1, pp. 29-33, 2013.
[27] J. Xiao and P. Flandrin, "Multitaper time-frequency reassignment for nonstationary spectrum estimation and chirp enhancement," IEEE Trans. Signal Processing, vol. 55, no. 6, pp. 2851-2860, 2007.
[28] H. T. Wu and Y. W. Liu, "Analyzing transient-evoked otoacoustic emissions by concentration of frequency and time," J. Acoust. Soc. Am. Vol. 144, pp. 448-466, 2018
[29] G. Qian, S. Sural, Y. Gu, and S. Pramanik, "Similarity between Euclidean and cosine angle distance for nearest neighbor queries," In Proc. 2004 ACM Symposium on Applied Computing, pp. 1232-1237, March 2004.
[30] J. Shlens, "A Tutorial on Principal Component Analysis," Systems Neurobiology Laboratory, Salk Institute for Biological Studies, pp. 1-13, December 2005.
[31] C. L. Talmadge, G. R. Long, W. J. Murphy, and A. Tubis, "New off-line method for detecting spontaneous otoacoustic emissions in human subjects," Hear. Res. Vol. 71, pp. 170-182, 1993.
[32] M. J. Penner and T. Zhang, "Prevalence of spontaneous otoacoustic emissions in adults revisited," Hear. Res. Vol. 103, no. 1-2, pp. 28-34, 1997.
[33] H. P. Wit and R. J. Ritsma, "Evoked acoustical responses from the human ear: some experimental results," Hear Res. Vol. 2, no.3-4, pp. 253-261, 1980.
[34] H. Gobsch and G. Tietze, "Interrelation of spontaneous and evoked otoacoustic emissions," Hear. Res. Vol. 69, no. 1-2, pp. 176-181, 1993.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *