|
[1] Picard, R. W. (1995). Affective computing. [2] Vinciarelli, A., Pantic, M., Heylen, D., Pelachaud, C., Poggi, I., D'Errico, F., & Schroeder, M. (2012). Bridging the gap between social animal and unsocial machine: A survey of social signal processing. IEEE Transactions on Affective Computing, 3(1), 69-87. [3] ]Narayanan, S., & Georgiou, P. G. (2013). Behavioral signal processing: Deriving human behavioral informatics from speech and language. Proceedings of the IEEE, 101(5), 1203-1233. [4] Hsiao, S. W., Sun, H. C., Hsieh, M. C., Tsai, M. H., Tsao, Y., & Lee, C. C. (2017). Toward Automating Oral Presentation Scoring during Principal Certification Program using Audio-video Low-level Behavior Profiles. IEEE Transactions on Affective Computing. [5] Tsai, F. S., Hsu, Y. L., Chen, W. C., Weng, Y. M., Ng, C. J., & Lee, C. C. (2016). Toward Development and Evaluation of Pain Level-Rating Scale for Emergency Triage based on Vocal Characteristics and Facial Expressions. In INTERSPEECH (pp. 92-96). [6] Lin, W. C., & Lee, C. C. (2018). Computational Analyses of Thin-sliced Behavior Segments in Session-level Affect Perception. IEEE Transactions on Affective Computing. [7] Chen, C. P., Tseng, X. H., Gau, S. S. F., & Lee, C. C. (2017). Computing Multimodal Dyadic Behaviors during Spontaneous Diagnosis Interviews toward Automatic Categorization of Autism Spectrum Disorder. Age (Avg/Std), 14, 3-08. [8] Chen, H. Y., Liao, Y. H., Jan, H. T., Kuo, L. W., & Lee, C. C. (2016, March). A Gaussian mixture regression approach toward modeling the affective dynamics between acoustically-derived vocal arousal score (VC-AS) and internal brain fMRI bold signal response. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on (pp. 5775-5779). IEEE. [9] Zhang, L., Samaras, D., Tomasi, D., Volkow, N., & Goldstein, R. (2005). Machine learning for clinical diagnosis from functional magnetic resonance imaging (pp. 1211-1217). IEEE. [10] Xie, S. Y., Guo, R., Li, N. F., Wang, G., & Zhao, H. T. (2009, June). Brain fMRI processing and classification based on combination of PCA and SVM. In Neural Networks, 2009. IJCNN 2009. International Joint Conference on (pp. 3384-3389). IEEE. [11] Londei, A., D’Ausilio, A., Basso, D., Sestieri, C., Del Gratta, C., Romani, G. L., & Belardinelli, M. O. (2007). Brain network for passive word listening as evaluated with ICA and Granger causality. Brain Research Bulletin, 72(4-6), 284-292. [12] Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Valdez, J. N., Siegel, S. J., ... & Gur, R. C. (2010). Association of enhanced limbic response to threat with decreased cortical facial recognition memory response in schizophrenia. American Journal of Psychiatry, 167(4), 418-426. [13] Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., ... & Altenmüller, E. (2006). Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage, 30(3), 917-926. [14] Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. (2002). Rethinking feelings: an FMRI study of the cognitive regulation of emotion. Journal of cognitive neuroscience, 14(8), 1215-1229. [15] Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293(5537), 2105-2108. [16] Northoff, G., Heinzel, A., Bermpohl, F., Niese, R., Pfennig, A., Pascual‐Leone, A., & Schlaug, G. (2004). Reciprocal modulation and attenuation in the prefrontal cortex: an fMRI study on emotional–cognitive interaction. Human Brain Mapping, 21(3), 202-212. [17] Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676-682. [18] Andrews-Hanna, J. R. (2012). The brain’s default network and its adaptive role in internal mentation. The Neuroscientist, 18(3), 251-270. [19] Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., ... & Varoquaux, G. (2014). Machine learning for neuroimaging with scikit-learn. Frontiers in neuroinformatics, 8, 14. [20] Meszlényi, R. J., Buza, K., & Vidnyánszky, Z. (2017). Resting state fMRI functional connectivity-based classification using a convolutional neural network architecture. Frontiers in neuroinformatics, 11, 61. [21] Kamonsantiroj, S., Charoenvorakiat, P., & Pipanmaekaporn, L. (2016, July). Learning Representation for fMRI Data Analysis Using Autoencoder. In Advanced Applied Informatics (IIAI-AAI), 2016 5th IIAI International Congress on (pp. 560-565). IEEE. [22] Huang, H., Hu, X., Zhao, Y., Makkie, M., Dong, Q., Zhao, S., ... & Liu, T. (2017). Modeling task fMRI data via deep convolutional autoencoder. IEEE transactions on medical imaging. [23] Chen, P. H., Zhu, X., Zhang, H., Turek, J. S., Chen, J., Willke, T. L., ... & Ramadge, P. J. (2016). A convolutional autoencoder for multi-subject fMRI data aggregation. arXiv preprint arXiv:1608.04846. [24] Yan, C., & Zang, Y. (2010). DPARSF: a MATLAB toolbox for" pipeline" data analysis of resting-state fMRI. Frontiers in systems neuroscience, 4, 13. [25] Brett M, Hanke M, Cipollini B, Côté M, Markiewicz C, Gerhard S, Larson E, Lee G, Halchenko Y, Kastman E, cindeem, Morency F, moloney, Millman J, Rokem A, jaeilepp, Gramfort A, den Bosch JFv, Subramaniam K, Nichols N, embaker, bpinsard, chaselgrove, Oosterhof N, St-Jean S, Amirbekian B, Nimmo-Smith I, Ghosh S, Varoquaux G, Garyfallidis E (2016) nibabel: 2.1.0. Zenodo https://doi.org/10.5281/ ZENODO.60808 [26] Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., ... & Dogonowski, A. M. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107(10), 4734-4739. [27] Chou, H. C., Lin, W. C., Chang, L. C., Li, C. C., Ma, H. P., & Lee, C. C. (2017, October). NNIME: The NTHU-NTUA Chinese interactive multimodal emotion corpus. In Affective Computing and Intelligent Interaction (ACII), 2017 Seventh International Conference on (pp. 292-298). IEEE. [28] Busso, C., Bulut, M., Lee, C. C., Kazemzadeh, A., Mower, E., Kim, S., ... & Narayanan, S. S. (2008). IEMOCAP: Interactive emotional dyadic motion capture database. Language resources and evaluation, 42(4), 335. [29] Lee, T. W. (1998). Independent component analysis. In Independent component analysis (pp. 27-66). Springer, Boston, MA. [30] Calhoun, V. D., Liu, J., & Adalı, T. (2009). A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage, 45(1), S163-S172. [31] Varoquaux, G., Sadaghiani, S., Pinel, P., Kleinschmidt, A., Poline, J. B., & Thirion, B. (2010). A group model for stable multi-subject ICA on fMRI datasets. Neuroimage, 51(1), 288-299. [32] Xie, J., Douglas, P. K., Wu, Y. N., Brody, A. L., & Anderson, A. E. (2017). Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms. Journal of neuroscience methods, 282, 81-94. [33] Jolliffe, I. (2011). Principal component analysis. In International encyclopedia of statistical science (pp. 1094-1096). Springer, Berlin, Heidelberg. [34] Lama, R. K., Gwak, J., Park, J. S., & Lee, S. W. (2017). Diagnosis of Alzheimer’s disease based on structural MRI images using a regularized extreme learning machine and PCA features. Journal of healthcare engineering, 2017. [35] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. [36] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105). [37] Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham. [38] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. [39] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9). [40] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [41] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88. [42] Baldi, P. (2012, June). Autoencoders, unsupervised learning, and deep architectures. In Proceedings of ICML workshop on unsupervised and transfer learning (pp. 37-49). [43] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. [44] Lin, Y. L., & Wei, G. (2005, August). Speech emotion recognition based on HMM and SVM. In Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on (Vol. 8, pp. 4898-4901). IEEE. [45] Nasreen, A., Vinutha, H., & Shobha, G. (2018). Analysis of Video Content Through Object Search Using SVM Classifier. In Innovations in Electronics and Communication Engineering (pp. 325-333). Springer, Singapore. [46] Kaucha, D. P., Prasad, P. W. C., Alsadoon, A., Elchouemi, A., & Sreedharan, S. (2017, September). Early detection of lung cancer using SVM classifier in biomedical image processing. In 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI) (pp. 3143-3148). IEEE. [47] Lieberman, Matthew (2 September 2016). Social. Broadway Books. p. 19. ISBN 978-0-307-88910-2. [48] Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1), 253-258. [49] Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., & Nichols, T. E. (Eds.). (2011). Statistical parametric mapping: the analysis of functional brain images. Elsevier.
|