帳號:guest(3.137.177.164)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李沛儒
作者(外文):Li, Pei-Ru
論文名稱(中文):分切合整數位控制 大功率併網型三相轉換器
論文名稱(外文):Grid-Connected High Power Three-Phase Converter with D-Σ Digital Control
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):潘晴財
羅有綱
林長華
口試委員(外文):Pan, Ching-Tsai
Lo, Yu-Kang
Lin, Chang-Hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061598
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:94
中文關鍵詞:分切合整數位控制三相四線半橋式轉換器電網併聯模式整流模式實虛功補償
外文關鍵詞:D-Σ digital controlthree-phase four-wire convertergrid connection moderectification modeactive/reactive power compensation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:566
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以高功率併網型轉換器為研究主題,電路架構採用三相四線半橋式轉換器,以微控制器Renesas RX62T為控制級的主要核心,而併網型轉換器的主要功能包含:輸出正實功至電網、負實功輸出與特定功率因數之電流輸出,系統將實、虛功依照所需要的比例饋入電網當中,進而達到補償電網電壓以及頻率的效果。
控制方面採用分切合整數位控制,與傳統的abc-dq軸轉換不同的地方在於,它可以簡化受控體與控制法則的推導,並且將電流變化、開關切頻與電感值的衰退都考慮進去。電感電流變化時,電感值會隨之改變,影響開關責任比率的計算式,進而使輸出電流波形失真的可能性降低。除此之外,以分切合整數位控制搭配正弦脈寬調變(SPWM),可以將三相轉換器分成三個單相來分析,大幅降低控制上的複雜程度。
在實作上,首先,利用模擬驗證其分切合整數位控制應用於三相四線半橋轉換器之可行性,再進行系統的功能實測,但是由於高功率下可使用之負載不足,所以本研究將兩台換流器串聯來進行循環測試,透過對電網一台抽載與一台補償直流鏈電壓的方式來減輕電網的負擔,最後驗證轉換器的各項功能。
本研究的貢獻為:構築兩台高功率的三相四線半橋轉換器電路;並且使用分切合整數位控制的三相轉換器之功能測試至滿載,證明在高功率下的可行性。
This thesis is aimed at design and implementation of two high power, grid-connected converters. A three-phase four-wire half-bridge circuit structure is adopted for high power transferring and the microcontroller, Renesas RX62T, is cho-sen as control center of the system. The main operation mode of the converter in-cludes injecting power into ac grid in power-injection mode and drawing power from the grid in rectification mode. In the power-injection mode, the converter will inject active/reactive power into the grid by the command from utility company to com-pensate grid voltage and frequency.
With regard to the control of the converter, this research adopts D-Σ digital con-trol. Comparing with conventional abc to dq frame transformation, the control law derivation of D-Σ digital control can be simplified. In addition, it takes the variations of dc bus voltage, switching frequency, and variation of inductance into considera-tion. If the current is large, inductance in the control law of duty-ratio calculation will change to real situation successively. Thus, distortion of the inductor current can be prevented. SPWM combined with D-Σ digital control can regard a three-phase converter as three single-phase converters when analyzing, and the duty ratio can be determined separately. This can reduce the complexity of duty-ratio calculation pro-foundly.
First, the feasibility of the three-phase four-wire half-bridge converter with D-Σ digital control has been verified by simulation. Due to a lack of loads in high-power condition, this research cascades two converters to do a circulation test. It can release the burden on the grid, one drawing, the other compensating power to dc bus from the grid. Finally, this research verifies all of the functions through the circulation test.
The major contributions of the thesis are: building two of the three-phase four-wire half-bridge converters and proving that all functions of the half-bridge converter adopting D-Σ digital control can be achieved. In addition, some functions have been already tested in high power levels.
目錄
國立清華大學 I
摘 要 i
Abstract ii
誌 謝 iv
目 錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1研究背景與動機 1
1.2文獻回顧 2
1.3論文大綱 9
第二章 硬體架構與控制方法 10
2.1系統架構 10
2.2分切合整數位控制 11
2.2.1受控體架構 12
2.2.2 受控體之運作分析 13
2.2.3控制器設計 17
2.3系統功能運作模式 18
2.3.1電流型控制 18
2.3.2電網併聯模式 19
2.3.3 整流模式 20
第三章 周邊電路設計 21
3.1周邊電路輔助電源 21
3.2開關驅動電源 22
3.3輔助電源偵錯電路 24
3.4光纖訊號傳輸電路 25
3.5上下臂開關隔離驅動電路 26
3.6推挽式放大電路 27
3.7電網電壓偵測電路 27
3.8交流電電壓回授電路 29
3.9電感電流回授電路 30
3.10直流鏈電壓回授電路 31
3.11開關溫度回授電路 31
3.12直流鏈預充電路 31
3.13系統緊急停止電路 34
第四章 韌體規劃與流程設計 35
4.1微控制器RX62T簡介 35
4.2程式溝通設計 38
4.2.1系統溝通 38
4.2.2變頻載波同步 38
4.3程式流程規劃 40
4.3.1主程式流程 40
4.3.2中斷程式流程 42
4.3.3載波同步中斷程式流程 47
4.3.4溫度控制板程式流程 48
第五章 模擬與實驗結果 49
5.1電氣規格 49
5.2實務考量 52
5.2.1電感值變化 52
5.2.2 AD取樣時間延遲 53
5.2.3 PWM死區補償 54
5.2.4 載波同步問題 56
5.2.5開關模組並聯 57
5.2.6散熱設計 59
5.3 模擬與實驗結果 60
5.3.1轉換器系統建模與模擬結果 60
5.3.2實測結果 70
5.3.3實測結果分析 76
5.3.4損耗分析 77
5.3.5單相燒機測試 81
第六章 結論與未來研究方向 84
6.1結論 84
6.2 未來研究方向 85
參考文獻 86

[1] T. V. Thang, A. Ahmed, C. i. Kim and J. H. Park, “Flexible system architecture of stand-alone pv power generation with energy storage device,” IEEE Trans. on Energy Conversion, vol. 30, no. 4, pp. 1386-1396, Dec. 2015.
[2] T. Chmielewski, “Environmental aspects of grid connected power electronic converters control,” Journal of Ecological Engineering, Volume 18, Issue 2, pages 182–191, March 2017.
[3] S. Kouro, J. I. Leon, D. Vinnikov and L. G. Franque-lo, “Grid-connected photovoltaic systems: an overview of recent re-search and emerging pv converter technology,” in IEEE Industrial Electronics Magazine, vol. 9, no. 1, pp. 47-61, March 2015.
[4] D. Franco, R. Gregor, J. Rodas and D. Gregor, “Power flux mod-el-based analysis of a micro-grid connected pv system with storage energy unit,” Universities Power Engineering Conference, pp. 1-6, Sep. 2015.
[5] W. Tang and Y. J. A. Zhang, “Optimal battery energy storage system control in microgrid with renewable energy generation,” IEEE In-ternational Conference on Smart Grid Communications, pp. 846-851, Nov. 2015.
[6] G. Coppez, S. Chowdhury and S. P. Chowdhury, “The importance of energy storage in renewable power generation: A review,” 45th In-ternational Universities Power Engineering Conference UPEC2010, Cardiff, Wales, pp. 1-5, 2010.
[7] X. Guo, R. He, J. Jian, Z. Lu, X. Sun and J. M. Guerrero, “Leakage current elimination of four-leg inverter for transformerless three-phase pv system,” IEEE Trans. on Power Electronics, vol. 31, no. 3, pp. 1841-1846, Mar. 2016.
[8] E. Ortjohann, A. Mohd, N. Hamsic and M. Lingemann, “Design and experimental investigation of space vector modulation for three-leg four-wire voltage source inverters,” European Conference on Power Electronics and Applications, pp. 1-6, Sep. 2009.
[9] G. Buticchi, D. Barater, E. Lorenzani, C. Concari and G. Franceschi-ni, “A nine-level grid-connected converter topology for single-phase transformerless pv systems,” IEEE Transactions on Industrial Elec-tronics, vol. 61, no. 8, pp. 3951-3960, Aug. 2014.
[10] 李俊毅,高功率三相中性點箝位式轉換器研製,國立中正大學電機工程研究所碩士論文,2014年7月
[11] W. Z. Qiao, M. Mizumoto, “PID type fuzzy controller and parame-ters adaptive method, ” Fuzzy Sets and Systems in ScienceDirect, Vol. 78, Issue 1, p.p. 23-35, 26 February 1996.
[12] S.-Z. He, S. Tan, F.-L. Xu, and P.-Z. Wang, “Fuzzy self-tuning of PID controllers,” Fuzzy Sets and Systems in ScienceDirect, Volume 56, Issue 1, Pages 37-46, 25 May 1993.
[13] P. R. Ouyang, V. Pano and T. Dam, “PID contour tracking control in position domain,” International Symposium on Industrial Electron-ics, pp. 1297-1302, May. 2012.
[14] K. H. Ang, G. Chong and Y. Li, “PID control system analysis, de-sign, and technology,” IEEE Trans. on Control Systems Technology, vol. 13, no. 4, pp. 559-576, Jul. 2005.
[15] T.-Y. Doh and J. R. Ryoo, “Robust repetitive controller design and its application on the track-following control system in optical disk drives,” IEEE Conference on Decision and Control and European Control Conference, pp. 1644-1649, Dec. 2011.
[16] D. Chen, J. Zhang and Z. Qian, “An improved repetitive control scheme for grid-connected inverter with frequency-adaptive capabil-ity,” IEEE Trans. on Industrial Electronics, vol. 60, no. 2, pp. 814-823, Feb. 2013.
[17] O. Kukrer, “Discrete-time current control of voltage-fed three-phase pwm inverters,” IEEE Transactions on Power Electronics ,Vol 11, Mar 1996 .
[18] G. R. Yu and J. S. Wei, “Fuzzy control of a bi-directional inverter with nonlinear inductance for DC microgrids,” IEEE International Conference on Fuzzy Systems, pp. 1941-1945, Jun. 2011.
[19] M. S. Khireddine, M. T. Makhloufi, Y. Abdessemed and A. Boutarfa, “Tracking power photovoltaic system with a fuzzy logic strategy,” IEEE International Conference on Computer Science and Information Technology, pp. 42-49, Mar. 2014.
[20] S. A. Krishna and L. Abraham, “Boost converter based power factor correction for single phase rectifier using fuzzy logic control,” IEEE International Conference on Computational Systems and Commu-nications, pp. 122-126, Dec. 2014.
[21] A. Emami-Naeini and G. Franklin, “Deadbeat control and tracking of discrete-time systems,” IEEE Transactions on Automatic Control, vol. 27, no. 1, pp. 176-181, Feb 1982.
[22] RS-35-24 Datasheet, 2018.
[23] TNY 278-280 Datasheet, 2006
[24] HFBR-0500Z Series Versatile Link The Versatile Fiber Optic Con-nection Datasheet, Sep. 2014.
[25] BSH-1000ICV5M Datasheet.
[26] FF900R12IP4 Datasheet, May. 2006.
[27] Renesas Electronics, “RX62T/62G Group Datasheet,” Jan. 2014.
[28] Infineon 2ED300E17-SFO—Evaluation Board for 2ED300C17-S/-ST IGBT driver, Application Note, V 1.1, Feb. 2008.
[29] Infineon AN2007-06–MA300E12/17–Module Adapter Board for PrimePACKTM IGBT Modules, Application Note, V 1.2, Jun. 2010.
[30] D. Bortis, J. Biela and J. W. Kolar, "Active Gate Control for Current Balancing of Parallel-Connected IGBT Modules in Solid-State Mod-ulators," in IEEE Transactions on Plasma Science, vol. 36, no. 5, pp. 2632-2637, Oct. 2008.
[31] Design reference on IGBT paralleling, Application Note, V1.0, Feb.2008
[32] UF250BMB23H1C2A Datasheet.
[33] IEEE Std 519-2014, “IEEE recommended practice and requirements for harmonic control in electric power systems,” IEEE, pp. 1-29, Jun. 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *