帳號:guest(18.216.26.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李承勳
作者(外文):Li, Cheng-Shiun
論文名稱(中文):具混合儲能支撐雙向三相切換式整流器供電之開關式磁阻馬達驅動系統
論文名稱(外文):BIDIRECTIONAL THREE-PHASE SWITCH-MODE RECTIFIER FED SWITCHED-RELUCTANCE MOTOR DRIVE WITH HYBRID ENERGY STORAGE SUPPORT
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):劉添華
王醴
口試委員(外文):Liu, Tian-Hua
Wang, Li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061595
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:146
中文關鍵詞:開關式磁阻馬達切換式整流器直流/直流轉換器增壓電壓控制電流控制速度控制能量儲存系統飛輪超電容蓄電池
外文關鍵詞:Switched-reluctance motorswitch-mode rectifierDC/DC convertervoltage boostingvoltage controlcurrent controlspeed controlenergy storage systemflywheelsuper-capacitorbattery
相關次數:
  • 推薦推薦:0
  • 點閱點閱:124
  • 評分評分:*****
  • 下載下載:43
  • 收藏收藏:0
本論文旨在開發一具再生剎車功能之雙向三相切換式整流器供電開關式磁阻馬達系統,並由混合式儲能源系統介接至其直流鏈,提升系統之供電可靠性及能源利用性。首先,建立一數位訊號處理器為主非對稱橋式整流器供電之開關式磁阻馬達驅動系統,以為測試平台。藉由適當設計之電力電路、感測及控制架構,所建系統具有正常操作及良好之驅動特性。再藉由得宜之換相移位及增壓策略,可再提升馬達於高速高載下之驅動性能。
接著,開發一具功因矯正之雙向交流/直流轉換器,其係由三相切換式整流器後接單臂降壓/升壓轉換器構成,作為開關式磁阻馬達驅動系統之交流前級。兩級轉換器之電力電路及控制機構均妥以設計及實現,在具良好入電電力品質下,馬達驅動系統具優良之驅動性能;同時,於再生煞車下,回收之儲能動能可成功回送市電。
最後,所建之混合式儲能系統於驅動系統之直流鏈處提供其能源緩衝。此儲能系統包含開關式磁阻電機驅動之飛輪、超電容組與蓄電池組,各經其雙向介面轉換器介接至直流鏈。藉由適當設計之電力電路及控制器,此混合儲能系統具有良好的充放電性能。於市電斷電時,馬達驅動系統由飛輪先提供能源支撐,其次為超電容;於功率型儲能耗盡時,蓄電池持續供能直到市電回復。所有電力組成之操控特性均以實測驗證之。
This thesis develops a switched-reluctance motor (SRM) drive powered by a bidirectional three-phase switch-mode rectifier (SMR) to have regenerative braking capability. It possesses improved power supplying reliability and energy utilization thanks to the equipped hybrid energy storage at DC-link. To be a test platform, a digital signal processor (DSP) based asymmetric bridge converter fed SRM drive is first developed. Normal operations and good driving characteristics are preserved by the properly designed power circuit, sensing schemes and control schemes. In addition, the commutation shift and voltage boosting are further properly treated to enhance the performances under heavier load and higher speed.
Second, a bidirectional power factor corrected (PFC) AC/DC converter consisting of a three-phase SMR and a followed one-leg buck/boost DC/DC converter is established. And it is used as the AC front-end of the SRM drive. The schematics and the constituted controllers of the two power stages are all adequately designed and implemented. Under satisfactory line drawn power quality, the SRM drive possesses good driving performance. And the regenerative braking can be successfully conducted with the stored kinetic energy being sent back to the mains.
Third, a hybrid energy storage system (HESS) is used to provide energy buffer for the SMR-fed SRM drive at its DC-link. The constructed HESS consists of a SRM-driven flywheel, a super-capacitor bank and a battery bank. All storage devices are connected to the DC-link through their bidirectional interface converters. Through proper designs of power circuits and controllers, the established energy storage system possesses good hybrid charging and discharging characteristics. As the grid power outage occurs, the motor drive can be first supported energy from the flywheel, then the super-capacitor is followed. As the power-type storage devices are exhausted their energies, the battery will succeed to discharge until the mains recovers. The operating characteristics of all power stages are verified experimentally.
ABSTRACT i
ACKNOWLEDGEMENTS ii
LIST OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES xiii
LIST OF SYMBOLS xiv
LIST OF ABBREVIATION xxiii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BASICS OF SWITCHED-RELUCTANCE MOTOR AND ENERGY STORAGE SYSTEM
6
2.1 Introduction 6
2.2 Introductory Switched-Reluctance Motor Drive 6
2.3 Interface Converters 13
2.4 Some Key Issues of SMR-fed SRM Drive 17
2.5 Energy Storage Devices 17
2.6 Applications of Energy Storage System 21
CHAPTER 3 AN EXPERIMENTAL SWITCHED-RELUCTANCE MOTOR DRIVE
24
3.1 Introduction 24
3.2 Power Circuit 24
3.3 Control Schemes 30
3.4 Experimental Evaluation 34
CHAPTER 4 THREE-PHASE SWITCH-MODE RECTIFIER FED SWITCHED-RELUCTANCE MOTOR DRIVE
48
4.1 Introduction 48
4.2 Three-phase Full-bridge Boost SMR 48
4.3 Bidirectional DC/DC Interface Converter 61
4.3.1 Buck Mode 61
4.3.2 Boost Mode 66
4.4 SRM Drive with Three-phase Full-bridge SMR Front-end 68
4.5 Efficiency Assessment of the Employed SRM 74
CHAPTER 5 SMR-FED SWITCHED-RELUCTANCE MOTOR DRIVE WITH HYBRID ENERGY STORAGE SUPPORT
78
5.1 Introduction 78
5.2 Flywheel Energy Storage System 78
5.2.1 System Configuration 78
5.2.2 Commutation Instant Shift 81
5.2.3 Control Scheme 82
5.2.4 Operating Modes 85
5.2.5 Flywheel Interface Converter 104
5.3 Supercapacitor Energy Storage System 120
5.3.1 System Configuration 120
5.3.2 Circuit Components 120
5.3.3 Measured Results 122
5.4 Battery Energy Storage System 123
5.4.1 System Configuration 123
5.4.2 Circuit Components 124
5.4.3 Measured Results 125
5.5 SMR-fed SRM Drive with Hybrid Energy Storage Support 127
CHAPTER 6 CONCLUSIONS 139
REFERENCES 140
[1] P. C. Sen, Principles of Electric Machines and Power Electronics, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2014.
[2] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
[3] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang, and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, 2012.
[4] K. F. Chou M. Cacciato, A. Consoli, G. Scarcella, and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE PESC, 2008, pp. 1235-1241.
[5] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2564-2575, 2013.
[6] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra, and I. Garate, “SRM converter topologies for EV application: State of the technology,” in Proc. IEEE ISIE, 2017, pp. 861-866.
[7] M. Kawa, K. Kiyota, and J. Furqani, “Acoustic noise reduction of a high efficiency switched reluctance motor for hybrid electric vehicles with novel current waveform,” in Proc. IEEE IEMDC, 2017, pp. 1-6.
[8] Z. Y., F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
[9] M. Cacciato S. M. Castano, J. Maixe-Altes, and A. Emadi, “Development and performance analysis of a switched reluctance motor drive for an automotive air-conditioning system,” in Proc. IEEE ITEC, 2016, pp. 1-8.
[10] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, “Design and initial testing of a high-speed 45-kw switched reluctance drive for aerospace application,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 988-997, 2017.
[11] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[12] K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam, and K. N. Srinivas, “Switched reluctance motor modeling, design, simulation, and analysis: a comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605-4617, 2008.
[13] P. C. Desai, M. Krishnamurthy, N. Schofield, and Ali Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649-659, 2010.
[14] D. H. Lee, T. H. Pham, and J. W. Ahn, “Design and operation characteristics of four-two pole high-speed SRM for torque ripple reduction,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3637-3643, 2013.
[15] J. W. Jiang, B. Bilgin, and A. Emadi, “Three-phase 24/16 switched reluctance machine for a hybrid electric powertrain,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 76-85, 2017.
[16] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, 1991.
[17] M. Ehsani, J. T. Bass, T. J. E. Miller, and R. L. Steigerwald, “Development of a unipolar converter for variable reluctance motor drives,” IEEE Trans. Ind. Appl., vol. IA-23, no. 3, pp. 545-553, 1992.
[18] S. Sindhuja and D. Susitra, “Design of a novel high grade converter for switched reluctance motor drive using component sharing,” in Proc. IEEE ICEETS, 2013, pp. 1174-1178.
[19] T. Nonaka, Y. Nakazawa, K. Ohyama, H. Fujii, H. Uehara, and Y. Hyakutake, “Inverter improving motor efficiency of switched reluctance motor for electric vehicle,” in Proc. EPE-PEMC, 2013, pp. 1-8.
[20] J. Ye and A. Emadi, “Power electronic converters for 12/8 switched reluctance motor drives: a comparative analysis,” IEEE Trans. Transport. Electrific. pp. 1-6, 2014.
[21] F. Peng, J. Ye, and A. Emadi, “An asymmetric three-level neutral point diode clamped converter for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 32, no. 11, pp.8618-8631, 2017.
[22] A. M. Hava, V. Blasko, and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
[23] S. Ebrahimi, V. Najmi, S. Ebrahimi, and H. Oraee, “A ZVS-resonant bifilar drive circuit for SRM with a reduction in stress voltage of switches,” in Proc. IEEE ACEMP, 2011, pp. 125-128.
[24] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” in Proc. IEEE Elect. Power Appl., 1993, vol. 140, no. 5, pp. 316-322.
[25] K. Chimata, N. Hoshi, and J. Haruna, “Characteristics of switched reluctance motor drive circuit with voltage boost function without additional reactor,” in Proc. IEEE PEDES, 2012, pp. 1-6.
[26] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IET Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[27] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
[28] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[29] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
[30] K. I. Hwu, “Development of a switched reluctance motor drive,” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2001.
[31] B. P. Loop and S. D. Sudoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, 2003.
[32] M. Ayaz and A. B. Yildiz, “An equivalent circuit model for switched reluctance motor,” in Proc. IEEE MELCON, 2006, pp. 1182-1185.
[33] V. Valdivia, R. Todd, F. J. Bryan, A. Barrado, A. Lázaro, and A. J. Forsyth, “Behavioral modeling of a switched reluctance generator for aircraft power systems,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2690-2699, 2014.
[34] J. Dong, B. Howey, B. Danen, J. Lin, J. W. Jiang, B. Bilgin, and A. Emadi, “Advanced dynamic modeling of three-phase mutually coupled switched reluctance machine,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 146-154, 2018.
[35] M. Rodrigues, P. J. Costa Branco, and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001.
[36] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[37] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[38] J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elec. Power Appl., vol. 153, no. 3, pp. 348-360, 2006.
[39] S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[40] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
[41] H. N. Huang, K. W. Hu, and C. M. Liaw, “A switch-mode rectifier fed switched-reluctance motor drive with dynamic commutation shifting using DC-link current,” IET Elec. Power Appl., vol. 11, no. 4, pp. 640-652, 2017.
[42] K. W. Hu, J. C. Wang, T. S. Lin, and C. M. Liaw, “A switched-reluctance generator with interleaved interface DC-DC converter,” IEEE Trans. Energy Convers. vol. 30, no. 1, pp. 273-284, 2015.
[43] C. Y. Ho, J. C. Wang, K. W. Hu, C. M. Liaw, and, “Development and operation control of a switched-reluctance motor driven flywheel,” IEEE Trans. Power Electron., to appear, 2018.
[44] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[45] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009.
[46] R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Proc. Electr. Power Appl., vol. 3, no. 5, pp. 453-460, 2009.
[47] H. Makino, T. Kosaka, and N. Matsui, “Control performance comparisons among three types of instantaneous current profiling technique for SR motor,” IET Proc. PEMD, pp. 1-6, 2014.
[48] I. Manolas, G. Papafotiou, and S. N. Manias, “Sliding mode PWM for effective current control in switched reluctance machine drives,” in Proc. IEEE IPEC, 2014, pp. 1606-1612.
[49] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[50] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IET Proc. Electric Power Appl., vol. 148, no. 4, pp. 345-352, 2001.
[51] G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” in Proc. IEEE IAS, 1995, vol. 1, pp. 263-270.
[52] A. Karami-Mollaee, “Sliding mode control of switch reluctance motor without chattering,” in Proc. IEEE ICEE, 2013, pp. 1-5.
[53] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
[54] S. K. Sahoo, S. K. Panda, and J. X. Xu, “Application of spatial iterative learning control for direct torque control of switched reluctance motor drive,” in Proc. IEEE PES, 2007, pp. 1-7.
[55] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[56] S. H. Li and C. M. Liaw, “Modelling and quantitative direct digital control for a DSP-based soft-switching-mode rectifier,” IEE Proceedings, Electric Power Appl., vol. 150, no. 1, pp. 21-30, 2003.
[57] A. J. Sabzali, E. H. Ismail, M. A. Al-Saffar, and A. A. Fardoun, “New bridgeless DCM Sepic and Ćuk PFC rectifiers with low conduction and switching losses,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 873-881, 2011.
[58] Y. C. Chang and C. M. Liaw, “A flyback rectifier with spread harmonic spectrum,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, Oct. 2011.
[59] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[60] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems - Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[61] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems -Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[62] V. A. Boicea “Energy storage technologies: the past and the present,” in Proc. IEEE, 2014, vol. 102, no. 11, pp. 1777-1794.
[63] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “An EV SRM drive powered by battery/ supercapacitior with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, Aug. 2015.
[64] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids- part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, 2016.
[65] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, 2017.
[66] M. O. Badawy, T. Husain, Y. Sozer, and J. A. D. Abreu-Garcia, “Integrated control of an IPM motor drive and a novel hybrid energy storage system for electric vehicles,” IEEE Trans. Ind. Appl., vol. 53. no. 6, pp. 5810-5819, 2017.
[67] K. Itani, A. D. Bernardinis, A. Jammal, “Energy management of a battery-flywheel storage system used for regenerative braking recuperation of an electric vehicle,” in Proc. IEEE IECON, 2016, pp. 2034-2039.
[68] J. Itoh, T. Nagano, K. Tanaka, K. Orikawa, and N. Yamada “Development of flywheel energy storage system with multiple parallel drives,” in Proc. IEEE Energy Convers., 2014, pp. 4568-4575.
[69] R. Furuta, J. Kawasaki, and K. Kondo, “Hybrid traction technologies with energy storage devices for nonelectrified railway lines,” IEEJ Trans. Elect. Electron. Eng., vol. 5, no. 3, pp. 291-297, 2010.
[70] M. Hino and D, Hara, “Application of an energy storage system using lithium-ion batteries for more effective regenerative energy utilization,” JR EAST Technical Review, No. 31, spring 2015, pp. 23-26.
[71] P. Arboleya, P. Bidaguren, and U. Armendariz, “Energy is on board: energy storage and other alternatives in modern light railways,” IEEE Electrification Magazine., vol. 4, no. 3, pp. 30- 41, 2016.
[72] M. Ogasa, “Application of energy storage technologies for electric railway vehicles- examples with hybrid electric railway vehicles,” IEEJ Trans. Elect. Electron. Eng., vol. 5, no. 3, pp. 304-311, 2010.
[73] T. Ratniyomchai, S. Hillmansen, and P. Tricoli, “Recent developments and applications of energy storage devices in electrified railways,” IET Electr. Syst. Transp. vol. 4, no. 1, 2014.
[74] D. Iannuzzi and P. Tricoli, “Metro trains equipped onboard with supercapacitors: a control technique for energy saving,” in Proc. IEEE SPEEDAM, 2010, pp. 750-756.
[75] S. Tominaga, I. Suga, H. Araki, H. Ikejima, M. Kusuma, and K. Kobayashi, “Development of energy-saving elevator using regenerated power storage system,” in Proc. IEEE PCC- Osaka, 2002, vol. 2, pp. 890-895.
[76] N. Jabbour, C. Mademlis, and I. Kioskeridis, “Improved performance in a supercapacitor- based energy storage control system with bidirectional dc-dc converter for elevator motor drives,” in Proc. IET PEMD, 2014, pp. 1-6.
[77] K. Kafalis and A. D. Karlis, “Comparison of flywheels and supercapacitors for energy saving in elevators,” in Proc. IEEE IAS., 2016, page 1-8.
[78] N. Jabbour and C. Mademlis, “Improved control strategy of a supercapacitor-based energy recovery system for elevator applications,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8398-8408, 2016.
[79] R. G. Lawrence, K. Craven, and G. D. Nichols, “Flywheel UPS,” IEEE Ind. Appl. Mag., vol. 9, no.3, pp. 44-50, 2003.
[80] A. Kusko and J. Dedad, “Short-term and long-term energy storage methods for standby electric power systems,” IEEE Trans. Ind. Appl., vol. 13, no.4, pp. 66-72, 2007.
[81] H. H. Abdeltawab and Y. A. I. Mohamed, “Robust energy management of a hybrid wind and flywheel energy storage system considering flywheel power losses minimization and grid-code constraints,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4242-4254, 2016.
[82] B. H. Kenny, P. E. Kascak, R. Jansen, T. Dever, and W. Santiago “Control of a high-speed flywheel system for energy storage in space applications,” IEEE Trans. Ind. Appl., vol. 41, no. 4, pp. 1029-1038, 2005.
[83] R. Arghandeh, M. Pipattanasomporn, and S. Rahman, “Flywheel energy storage systems for ride-through applications in a facility microgrid,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1955-1962, 2012.
[84] J. Itoh, D. Sato, T. Nagano, K. Tanaka, N. Yamada, and K. Kato, “Development of high efficiency flywheel energy storage system for power load-leveling,” in Proc. IEEE INTELEC, 2014, page 1-8.
[85] W. Gruber, T. Hinterdorfer, H. Sima, A. Schulz and J. Wassermann, “Comparison of different motor-generator sets for long term storage flywheels,” in Proc. IEEE Power Electron., Electrical Drives, Automation and Motion, 2014, pp. 161-166.
[86] G. Cimuca, S. Breban, M. M. Radulescu, C. Saudemont, and B. Robyns, “Design and control strategies of an induction-machine-based flywheel energy storage system associated to a variable-speed wind generator,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 526-534, 2010.
[87] J. L. da S. Neto, R. de Andrade Jr., L. G. B. Rolim, A. C. Ferreira, G. G. Sotelo, W. Suemitsu, “Experimental validation of a dynamic model of a SRM used in superconducting bearing flywheel energy storage system,” in Proc. IEEE ISIE, 2006, vol. 3, pp. 2492-2497.
[88] E. Bernsmüller, L. G. B. Rolim, and A. C. Ferreira, “External rotor switched reluctance machine for a kinetic energy storage system,” in Proc. IEEE IECON, 2016, pp. 1636-1641.
[89] J. Sun, Z. Kuang, S. Wang, and Y. Chen, “Efficiency optimal control of switched reluctance machine over wide speed range applied to flywheel energy storage system,” in Proc. IEEE EML, 2012, page 1-6.
[90] F. Caricchi, F. Crescimbini, G. Noia, and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389.
[91] N. Mohan, T.M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
[92] E. Hiraki, K. Hirao, T. Tanaka, and T. Mishima, “A push-pull converter based bidirectional DC-DC interface for energy storage systems,” in Proc. IEEE EPE, 2009, pp. 1-10.
[93] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system,” IEEE Trans. Power. Electron., vol. 27, no. 3, pp. 1237-1248, 2012.
[94] A. A. Fardoun, E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “Bi-directional converter with low input/output current ripple for renewable energy applications,” in Proc. IEEE ECCE, 2011, pp. 3322-3329.
[95] Z. Zhang, O. C. Thomsen, and M. A. E. Andersen, “Optimal design of a push-pull-forward half-bridge (PPFHB) bidirectional dc–dc converter with variable input voltage,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp.2761-2771, 2012.
[96] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
[97] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional dc-dc converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *