帳號:guest(18.118.95.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳仕育
作者(外文):Chen, Shih-Yu.
論文名稱(中文):以單相和三相模組建構之複合式串接型轉換器開發
論文名稱(外文):Development of a Hybrid Cascaded Converter with Single- and Three- Phase Modules
指導教授(中文):鄭博泰
指導教授(外文):Cheng, Po-Tai
口試委員(中文):唐丞譽
包彼得
林景源
口試委員(外文):Yu, Tang-Cheng
Barbosa, Peter
Lin, Jing-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061594
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:75
中文關鍵詞:模組多階層串接型轉換器複合式串接型轉換器直流鏈電壓平衡控制相位移脈波寬度調變
外文關鍵詞:Modular multilevel cascaded converterHybrid cascaded converterPhase shift pulse width modulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:31
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文提出一種複合式模組多階層串接型轉換器架構,利用單相橋式轉換器串接三相三階中性點箝位轉換器組成之複合式架構進行研究。與一般星型串接橋式轉換器相比,在最後一層將橋式轉換器改為三相三階中性點箝位轉換器。此外,在維持相同的輸出電壓階層數時,減少了電路上電容及直流鏈電壓感測器之數量,再加上對於三相三階中性點箝位轉換器之直流鏈電壓在沒有兩倍頻漣波電壓的影響下,其電容容值及體積能因此減小,提供一種模組多階層串接型轉換器的選擇。
然而,在此複合式串接型轉換器下,由於橋式轉換器與三相三階中性點箝位轉換器切換方式不盡相同,切換時造成其輸出電壓經疊合後將一次跨越超過一階層,使得輸出電壓諧波增大,進而影響整體電流品質。因此,本論文將針對此問題提出改善方式,首先介紹本文架構之直流鏈電壓平衡控制,再利用雙重傅立葉積分分析其輸出電壓,並藉由調整其載波的方式,改善其輸出電壓諧波分布,進一步提升其輸出電流品質,最後在相同切換次數下比較傳統型相位移脈波寬度調變和調整後相位移脈波寬度調變的表現。本文以實驗機台的結果驗證此篇論文所提出之方法的正確性。






關鍵字: 模組多階層串接型轉換器、複合式串接型轉換器、直流鏈電壓平衡控制、相位移脈波寬度調變
This thesis presents a hybrid topology of modular multilevel cascaded converter, composed of the single-phase H-bridge converter and the three-phase three-level neutral point clamped (NPC) converter. Compared with the conventional star-connected cascaded H-bridge converter, this circuit substituted the last layer of single-phase H-bridge converters with the three-phase three-level neutral point clamped converter. Not only it can maintain the same number of output voltage level, but also reduce the number of capacitor and DC bus voltage sensor in the circuit. Furthermore, the value of capacitor and its volume can be lowered because the DC bus voltage of the three-phase three-level NPC converter has no effect of the double-frequency ripple voltage. It provides a choice of the modular multilevel cascade converter.
However, as a result of the difference between switch pattern of H-bridge converter and three-level NPC converter under the hybrid cascaded converter, the overall output voltage cross over more than one level. It will result in the harmonics of the output voltage increase and affect the output current quality. Therefore, this thesis will adjust the carrier wave for this problem. The harmonic distribution of the output voltage and the output current quality can be improved. Compared to conventional phase shift pulse width modulation (PSPWM), better performance of modified PSPWM can be obtained under the same switching times. The proposed control method is validated by experimental results.

Keywords: Modular multilevel cascaded converter、Hybrid cascaded converter、Phase shift pulse width modulation
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章、緒論 1
1.1 研究背景與動機 1
1.2 論文內容概述 3
第二章、文獻回顧 4
2.1 簡介 4
2.2 脈波寬度調變技術 4
2.2.1 三階中性點箝位轉換器之相位配置脈波寬度調變(PDPWM) 4
2.2.2 三階空間向量調變法 5
2.2.3 多階層轉換器之相位移脈波寬度調變(PSPWM) 9
2.3 空白時間補償器 10
2.3.1 空白時間(Dead-time)產生 10
2.3.2 空白時間補償器(Dead-time compensator)方法 12
2.4 平均功率潮流分析 17
2.4.1 參數轉換之定義說明 (三相電壓、電流 ) 18
2.4.2平均功率定義及分析 (總體功率、簇功率) 20
第三章、操作原理 27
3.1 簡介 27
3.2 電壓平衡控制 27
3.2.1 整體電壓平衡控制與虛功功率控制 28
3.2.2 混合式電壓控制 28
3.2.3 簇電壓平衡控制 29
3.2.4個別電壓平衡控制 31
3.3 以貝索近似式分析輸出電壓諧波 32
3.3.1 橋式轉換器 32
3.3.2 單相串接橋式轉換器 33
3.3.3 中性點箝位轉換器之單臂 34
3.3.4 複合式串接型轉換器 35
3.4 藉載波調整分配其諧波分布 38
3.4.1 以貝索近似式調整個別載波 38
3.4.2 複合式串接型轉換器調整後之載波 40
3.5 相同切換次數下之輸出比較 41
3.5.1 傳統型相位移脈波寬度調變 42
3.5.2 調整後相位移脈波寬度調變 42
3.5.3 相同切換次數下之輸出電壓諧波分布 43
3.6 系統控制方塊圖 44
第四章、機台實驗結果 46
4.1 簡介 46
4.2 穩態下之平衡操作 49
4.2.1 傳統型相位移脈波寬度調變 49
4.2.2 傳統型調變技術之零序電壓注入作三階空間向量調變法 53
4.2.3 調整後相位移脈波寬度調變 57
4.2.4 調整後調變技術之零序電壓注入作三階空間向量調變法 61
4.3 頻譜分析 65
第五章、結論與未來展望 71
5.1 結論 71
5.2 未來展望 72
參考文獻 73

[ 1 ]
H. Akagi, "Classification, Terminology, and Application of the Modular Multilevel Cascade Converter (MMCC)," in IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3119-3130, Nov. 2011.

[ 2 ]
H. Akagi, S. Inoue and T. Yoshii, "Control and Performance of a Transformerless Cascade PWM STATCOM With Star Configuration," in IEEE Transactions on Industry Applications, vol. 43, no. 4, pp. 1041-1049, July-aug. 2007.

[ 3 ]
B. Gultekin and M. Ermis, "Cascaded Multilevel Converter-Based Transmission STATCOM: System Design Methodology and Development of a 12 kV ±12 MVAr Power Stage," in IEEE Transactions on Power Electronics, vol. 28, no. 11, pp. 4930-4950, Nov. 2013.

[ 4 ]
L. Maharjan, S. Inoue and H. Akagi, "A Transformerless Energy Storage System Based on a Cascade Multilevel PWM Converter With Star Configuration," in IEEE Transactions on Industry Applications, vol. 44, no. 5, pp. 1621-1630, Sept.-Oct. 2008.

[ 5 ]
Y. Yu, G. Konstantinou, B. Hredzak and V. G. Agelidis, "Power Balance Optimization of Cascaded H-Bridge Multilevel Converters for Large-Scale Photovoltaic Integration," in IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1108-1120, Feb. 2016.

[ 6 ]
Y. Okazaki, M. Hagiwara and H. Akagi, "Multiple medium-voltage motor drives using modular multilevel cascade converters with medium-frequency transformers," 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), Taipei, 2015, pp. 1-6.

[ 7 ]
S. Mekhilef and M. N. Abdul Kadir, "Novel Vector Control Method for Three-Stage Hybrid Cascaded Multilevel Inverter," in IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1339-1349, April 2011.


[ 8 ]
J. Rodriguez, Jih-Sheng Lai and Fang Zheng Peng, "Multilevel inverters: a survey of topologies, controls, and applications," in IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724-738, Aug 2002.

[ 9 ]
J. Wen and K. Ma Smedley, "Synthesis of Multilevel Converters Based on Single- and/or Three-Phase Converter Building Blocks," in IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1247-1256, May 2008.

[ 10 ]
Y. C. Su, P. H. Wu and P. T. Cheng, "Control of the hybrid cascaded converter under unbalanced conditions," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, 2017, pp. 2858-2565.

[ 11 ]
F. Wang, "Sine-triangle vs. space vector modulation for three-level PWM voltage source inverters," Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129), Rome, 2000, pp. 2482-2488 vol.4.

[ 12 ]
B. P. McGrath, D. G. Holmes and T. Lipo, "Optimized space vector switching sequences for multilevel inverters," in IEEE Transactions on Power Electronics, vol. 18, no. 6, pp. 1293-1301, Nov. 2003.

[ 13 ]
L. Maharjan, S. Inoue, H. Akagi, and J. Asakura, “State-of-charge (SOC)-balancing control of a battery energy storage system based on a cascade PWM converter,” in IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1628–1636, June 2009..

[ 14 ]
N. Hatano and T. Ise, "Control Scheme of Cascaded H-Bridge STATCOM Using Zero-Sequence Voltage and Negative-Sequence Current," in IEEE Transactions on Power Delivery, vol. 25, no. 2, pp. 543-550, April 2010.

[ 15 ]
H. Kim and H. Akagi, "The instantaneous power theory on the rotating p-q-r reference frames," Power Electronics and Drive Systems, 1999. PEDS '99. Proceedings of the IEEE 1999 International Conference on, 1999, pp. 422-427 vol.1.


[ 16 ] C. T. Lee, H. C. Chen, C. W. Wang, P. H. Wu, C. H. Yang and P. T. Cheng, "A flexible DC voltage balancing control based on the power flow management for star-connected cascaded H-bridge converter," 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 3922-3929.

[ 17 ] C. T. Lee, H. C. Chen, C. W. Wang, P. H. Wu, C. H. Yang and P. T. Cheng, "Zero-sequence voltage injection for DC capacitor voltage balancing control of the star-connected cascaded H-bridge PWM converter under unbalanced grid," 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 4670-4676.

[ 18 ] D. Grahame Holmes, Thomas A. Lipo, “Pulse Width Modulation for Power Converter,” pp159, pp479.

[ 19 ] P. H. Wu, Y. C. Su and P. T. Cheng, "A distributed control technique for the multilevel cascaded converter," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, 2017, pp. 693-700.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *