帳號:guest(3.133.136.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王鈞平
作者(外文):Wang, Chun-Ping
論文名稱(中文):隨機多無人機網路系統的強健追蹤控制在布朗和布瓦松雜訊干擾之下
論文名稱(外文):Stochastic Robust Team Tracking Control of Multi-UAV Networked System under Wiener and Poisson Random Fluctuations
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):李柏坤
黃志良
徐勝均
口試委員(外文):Lee, Bore-Kuen
Hwang, Chih-Lyang
Xu, Sheng-Dong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061591
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:28
中文關鍵詞:強健團隊追蹤控制領導者-追隨者任務控制團隊網路控制系統線性矩陣不等式隨機模糊系統多四軸機網路系統
外文關鍵詞:robust team tracking controlleader-follower task controlnetworked team control systemlinear matrix inequality (LMI)stochastic Fuzzy Systemquadrotor UAVs networked system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:758
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,多無人機系統因其龐大的應用領域及發展而備受關注。然而,這種多無人機網路系統的團隊追蹤控制仍然是一個複雜的控制問題;除此之外,它不僅可能遭受外部干擾也會受到內在擾動的影響包括連續的布朗運動和不連續的布瓦松運動。在這項研究中,一個leader-follower 團隊追蹤控制被提出來處理這種隨機多無人機網路系統的團隊追蹤問題並且可以同時保證其達到Hꝏ強健穩定的追踪性能。起初,多部無人機網路系統動態模型被組合為一個擴增系統,並且將其轉換成一個shift tracking error dynamic system來表示多無人機leader-follower formation參考追蹤系統。因此,這種多無人機系統團隊追踪控制設計的問題可以轉變為Hamilton-Jacobin(HJI)不等式約束優化問題。但是,這個HJI約束優化問題設計仍然難以解決,因此T-S模糊模型的方法被引入來簡化設計過程中則是利用多組線性系統經由內插法逼近一個非線性系統。透過提出的T-S模糊控制方法,隨機多無人機網路系統的Hꝏ強健團隊追踪控制設計可以轉化為線性矩陣不等式(LMI)約束優化問題可以使用凸優化技術非常有效地解決。最後,一個模擬的例子是用於說明並驗證所提出的Hꝏ強健團隊追踪控制方法可以使這個多無人機網路系統有效的達到所需的姿態和路徑追蹤。
Recently, multi-UAV (unmanned aerial vehicle) system has attracted much attention due to its vast applications. However, the team tracking of multi-UAV networked system with desired attitude and path is still a complex control problem. Moreover, it may suffer from not only external disturbances but also intrinsic continuous Wiener and discontinuous Poisson random fluctuations. In this study, a leader-follower task control is proposed to deal with the stochastic robust multi-UAV networked team tracking control problem to guarantee for the 1 robust tracking performance. At first, multi-UAV networked dynamic models are augmented into an augmented system and the leader-follower reference tracking of augmented system could be represented by a shifted networked tracking error dynamic system by arranging the UAVs in a leader-follower formation in the reference tracking process. Therefore, the robust team tracking control design of the multi-UAV system is transformed to an Hamilton-Jacobin inequality (HJI)-constrained optimization problem. However, the HJI-constrained optimization problem is still hard to be solved for designing the robust team tracking controller, so T-S fuzzy identification method is employed to approximate the nonlinear networked system by interpolating a set of local linearized networked systems to simplify the design procedure. By the proposed T-S fuzzy control method, the 1 robust leader-follower tracking control design of stochastic multi-UAV networked system can be transformed to a linear matrix inequality (LMI)-constrained optimization problem which can be solved very efficiently using the convex optimization techniques. Finally, a simulation example is given to illustrate the design procedure of the robust team tracking control of desired attitude and path and validate the effectiveness of the proposed robust 1 team tracking control method of multi-UAV networked system.
摘要---------------------------------------------------------------i
Abstract----------------------------------------------------------ii
致謝-------------------------------------------------------------iii
Content-----------------------------------------------------------iv
I. INTRODUCTION------------------------------------------------- 1
II. PRILIMINARIES AND QUADROTOR UAV SYSTEM----------------------- 4
III. PROBLEM FORMULATION------------------------------------------ 6
IV. ROBUST Hꝏ TEAM TRACKING CONTROL DESIGN OF STOCHASTIC
MULTI-UAV NETWORKED SYSTEM VIA T-S FUZZY MODEL-------------- 12
V. ROBUST Hꝏ FUZZY TEAM TRACKING CONTROL DESIGN OF
MULTI-UAV NETWORKED SYSTEM---------------------------------- 15
VI. SIMULATION RESULT------------------------------------------- 17
VII. CONCLUSION-------------------------------------------------- 22
VIII.APPENDIX---------------------------------------------------- 23
REFERENCES------------------------------------------------------- 27
[1] M. A. Ma’sum, M. K. Arrofi, G. Jati, F. Arifin, M. N. Kurniawan, P. Mursanto, and W. Jatmiko, ”Simulation of intelligent
Unmanned Aerial Vehicle (UAV) For military surveillance,” in IEEE Int. Conf. Advanced Computer Science and Information
Systems, Bali, Indonesia, pp. 161-168, Sep. 2013.
[2] D.H. Lyon, ”A military perspective on small unmanned aerial vehicles,” IEEE Instrumentation and Measurement Magazine,
vol. 7, no. 3, pp. 27-31, Sep. 2004.
[3] N. Nigam, ”The multiple unmanned air vehicle persistent surveillance problem: a review,” Machines, vol. 2, no. 1, pp.
13-72, Jan. 2014.
[4] J. J. Acevedo, B. C. Arrue, I. Maza, and A. Ollero, ”Distributed approach for coverage and patrolling missions with a
team of heterogeneous aerial robots under communication constraints,” Int. Journal of Advanced Robotic Systems, vol.
10, no. 28, pp. 13-72, Jan. 2014.
[5] J. J. Acevedo, B. C. Arrue, J. M. Diaz-Banez, I. Ventura, I. Maza, and A. Ollero, ”One-to-one coordination algorithm
for decentralized area partition in surveillance missions with a team of aerial robots,” Journal of Intelligent and Robotic
Systems, vol. 74, no. 1-2, pp. 269-285, Apr. 2014.
[6] P. Pounds , R. Mahony, and P. Corke , ”Modelling and control of a large quadrotor robot,” Photoelectric System, vol. 18,
no. 7, pp. 691-699, Feb. 2010.
[7] T. Luukkonen, ”Modelling and control of quadcopter,” Aalto University, School of Science, Aug. 2011.
[8] T. Bresciani, ”Modelling, Identification and Control of a Quadrotor Helicopter,”Lund University, Department of Automatic
Control, Oct. 2008.
[9] L. M. Argentim, W. C. Rezende, P. E. Santos, and R. A. Aguiar, ”PID LQR and LQR-PID on a quadcopter platform,” in
IEEE Int. Conf. Informatics, Electronics and Vision, Dhaka, Bangladesh, pp. 1-6, May 2013.
[10] M. Herrera, W. Chamorro, A. Gomez, and O. Camacho, ”Sliding Mode Control : An approach to Control a Quadrotor,”
in IEEE Asia-Pacific Conf. Computer Aided System Engineering, Quito, Ecuador, pp. 3-4, Jul. 2015.
[11] T. Madani and A. Benallegue, ”Backstepping control for a quadrotor helicopter,” in IEEE Int. Conf. Intelligent Robots
and Systems, Beijing, China, pp. 3255-3260, Jan. 2006.
[12] S. S. Ge, E. Hong, and T. H. Lee, ”Robust adaptive control of nonlinear systems with unknown time delays,” Automatica,
vol. 41, no. 7, pp. 1181–1190, Jul. 2005.
[13] R. Lozano, P. Castillo, P. Garcia, and A. Dzul, ”Robust prediction-based control for unstable delay systems: Application
to the yaw control of a mini-helicopter,” Automatica, vol. 40, no. 4, pp. 603–612, Apr. 2004.
[14] A. Das, K. Subbarao, and F. Lewis, ”Dynamic inversion with zerodynamics stabilisation for quadrotor control,” IET control
theory and applications, vol. 3, no. 3, pp. 303–314, Mar. 2009.
[15] Y. Yang, Q. Wu, and M. Chen, ”Robust trajectory tracking control for a quadrotor unmanned aerial vehicle using
disturbance observer,” in IEEE-WCICA, Guilin, China, pp. 697-702, Sep. 2016.
[16] D. J. Bennet, C.R. McInnes , M. Suzuki, and K. Uchiyama, ”Autonomous three-dimenonal formation flight for a swarm
of unmanned aerial vehicles,” Journal of Guidance, Control, and Dynamics, vol. 34, no. 6, pp. 1899-1908, Dec. 2011.
[17] M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, ”Slidingmode formation control for cooperative autonomous mobile
robots,” IEEE Trans. Industrial Electronics vol. 55, no. 11, pp. 3944-3953, Nov. 2008.
[18] J. Lawton, R. Beard, and B. Young, ”A decentralized approach to formation maneuvers,” IEEE Trans. Robotics and
Automation, vol. 19, no. 6, pp. 933-941, Dec. 2003.
[19] P. Ogren, M. Egerstedt, and X. Hu, ”A control lyapunov function approach to multiagent coordination,” IEEE Trans.
Robotics and Automation , vol. 18, no. 5, pp. 847-851, Oct. 2002.
[20] W. Yu, G. Chen, W. Ren, J. Kurths, and W. Zheng, ”Distributed higher order consensus protocols in multiagent dynamical
systems,” IEEE Trans. Circuits and Systems, vol. 58, no. 8, pp. 1924-1932, Feb. 2011.
[21] S.J. Ho, C.Y. Chen, and B.S.Chen, ”Analysis for the Robust H1 Synchronization of Nonlinear Stochastic Coupling Networks
Through Poisson Processes and Core Coupling Design,” IEEE Trans. Control of Network Systems, vol. 4, no. 2, pp. 223-
235, Jun. 2017.
[22] Z. Li, Z. Duan, G. Chen, and L. Huang, ”Consensus of multiagent systems and synchronization of complex networks: a
unified viewpoint,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 57, no. 1, pp. 213–224, Jun. 2009.
[23] Z. Li, Z. Duan, and L. Huang, ”Leader-follower consensus of multiagent systems,” in American Control Conference, St.
Louis, MO, USA, pp. 3256–3261, Jun. 2009.
[24] C. Ramazan , I. Serhat, and S. Serhat, ”Statistical Wiener process model for vibration signals in accelerated aging processes
of electric motors,” Journal of Vibroengineering. vol 16, no. 2, pp. 1392-8716, Mar. 2014.
[25] R. C. L. F. Oliveira, A. N. Vargas, J. B. R. do Val, and P. L. D. Peres, ”Mode-independent H2-control of a DC motor
modeled as a Markov jump linear system,” IEEE Trans. Control System Technology, vol. 22, no. 5, pp. 1915-1919, Sep.
2014.
[26] B. Øksendal and A. Sulem, ”Applied stochastic control of jump diffusions,” 2nd ed. Berlin: Springer, 2007.
[27] F. Hanson, ”Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis and Computation,” 2nd
ed. Philadelphia, PA: SIAM, 2007.
[28] B.S. Chen, B.K. Lee, and L.B. Guo, ”Optimal tracking design for stochastic fuzzy systems,” IEEE Trans. Fuzzy Systems,
vol. 11, no. 6, pp. 796-813, Dec. 2003.
[29] K. Watanabe, ”Stochastic fuzzy control. I. Theoretical derivation,” in IEEE Int. Conf. Fuzzy Systems, Yokohama, Japan,
pp. 547-554, Mar. 1995.
[30] K. Watanabe, K. Izumi, and F. Han, ”Stochastic fuzzy servo control using multiple linear dynamic models,” in IEEE Int.
Conf. Knowledge-Based Intelligent Electronic Systems, Adelaide, SA, Australia, pp. 474–482, Apr. 1998.
[31] B. S. Chen, C. S. Tseng, and H. J. Uang, ”Robustness design of nonlinear dynamic systems via fuzzy linear control,” IEEE
Trans. Fuzzy Systems, vol. 7, no.5, pp. 571-585, Oct. 1999.
[32] C. S. Tseng, B. S. Chen, and H. J. Uang, ”Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy
model,” IEEE Trans. Fuzzy Systems, vol. 9, no. 3, pp. 381-392, Jun. 2001.
[33] T.Takagi and M.Sugeno, ”Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans.
Systems, Man, and Cybernetics, vol. 15, no. 1, pp. 116-132, Feb. 1985.
[34] M. Verhaegen, ”Identification of the deterministic part of MIMO state space models given in innovations form input-output
data,” Automatica, vol. 30, no.1, pp. 61-74, Jan. 1994.
[35] B. Kosko, ”Fuzzy systems as universal approximators,” IEEE Trans. Computers, vol. 43, no. 11, pp. 1329–1333, Nov.
1994.
[36] J.J. Xiong and E.H. Zheng, ”Position and attitude tracking control for a quadrotor UAV,” ISA Trans., vol 53, no. 3, pp.
725-731, May 2014.
[37] Z. Lin, W. Ding, G. Yan, C. Yu, and A. Giua, ”Leader–follower formation via complex Laplacian,” Automatica, vol. 49,
no. 6, pp. 1900–1906, Jun. 2013.
[38] F. Xiao, L. Wang, J. Chen, and Y. Gao, ”Finite-time formation control for multi-agent systems,” Automatica, vol. 45, no.11,
pp. 2605–2611, Nov. 2009.
[39] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan,” Linear Matrix Inequalities in System and Control Theory,”
Philadelphia, PA, USA: SIAM, 1994.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *