|
[1] J. Feulner, S. Kevin Zhou, M. Huber, A. Cavallaro, J. Hornegger, and D. Comani- ciu, “Model-based esophagus segmentation from ct scans using a spatial probabil- ity map,” in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (T. Jiang, N. Navab, J. P. W. Pluim, and M. A. Viergever, eds.), (Berlin, Heidelberg), pp. 95–102, Springer Berlin Heidelberg, 2010. 2, 5, 6 [2] S. Yousefi, H. Sokooti, M. S. Elmahdy, F. P. Peters, M. T. M. Shalmani, R. T. Zinkstok, and M. Staring, “Esophageal gross tumor volume segmentation using a 3d convolutional neural network,” in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 343–351, Springer, 2018. 2, 5, 6 [3] F. Tobias, A. Sonja, B. Dimos, B. A. Ismail, D. Christian, and D. Jose, “Esophagus segmentation in ct via 3d fully convolutional neural network and random walk,” Medical Physics, vol. 44, pp. 6341–6352, Sept 2017. 2, 6 [4] R. Trullo, C. Petitjean, D. Nie, D. Shen, and S. Ruan, “Fully automated esopha- gus segmentation with a hierarchical deep learning approach,” in 2017 IEEE In- ternational Conference on Signal and Image Processing Applications (ICSIPA), pp. 503–506, Sept 2017. 2, 6 [5] P. F. Christ, M. E. A. Elshaer, F. Ettlinger, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, M. Armbruster, F. Hofmann, M. DžAnastasi, et al., “Automatic liver and lesion segmentation in ct using cascaded fully convolutional neural net- works and 3d conditional random fields,” in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 415–423, Springer, 2016. 5, 6 [6] P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaera, J. Lipkova, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, et al., “Automatic liver and tumor segmentation of ct and mri volumes using cascaded fully convolutional neural net- works,” arXiv preprint arXiv:1702.05970, 2017. 5, 6 [7] C. Sun, S. Guo, H. Zhang, J. Li, M. Chen, S. Ma, L. Jin, X. Liu, X. Li, and X. Qian, “Automatic segmentation of liver tumors from multiphase contrast-enhanced ct images based on fcns,” Artificial intelligence in medicine, vol. 83, pp. 58–66, 2017. 5, 6 [8] D. Zikic, Y. Ioannou, M. Brown, and A. Criminisi, “Segmentation of brain tu- mor tissues with convolutional neural networks,” Proceedings MICCAI-BRATS, pp. 36–39, 2014. 5, 6 35[9] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.-M. Jodoin, and H. Larochelle, “Brain tumor segmentation with deep neural net- works,” Medical Image Analysis, vol. 35, pp. 18–31, 2017. 5, 6 [10] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440, 2015. 6, 19 [11] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d u- net: learning dense volumetric segmentation from sparse annotation,” in Interna- tional Conference on Medical Image Computing and Computer Assisted Interven- tion (MICCAI), pp. 424–432, Springer, 2016. 6 [12] F. Milletari, N. Navab, and S. Ahmadi, “V-net: Fully convolutional neural net- works for volumetric medical image segmentation,” in International Conference on 3D Vision (3DV), pp. 565–571, Oct 2016. 6 [13] X. Ren, L. Xiang, D. Nie, Y. Shao, H. Zhang, D. Shen, and Q. Wang, “Interleaved 3d-cnns for joint segmentation of small-volume structures in head and neck ct im- ages,” Medical Physics, vol. 45, no. 5, pp. 2063–2075, 2018. 6 [14] Z. Zhu, Y. Xia, W. Shen, E. K. Fishman, and A. L. Yuille, “A 3d coarse-to-fine framework for automatic pancreas segmentation,” in 3DV, 2018. 6 [15] D. Nguyen, X. Jia, D. Sher, M.-H. Lin, Z. Iqbal, H. Liu, and S. Jiang, “Three- Dimensional Radiotherapy Dose Prediction on Head and Neck Cancer Patients with a Hierarchically Densely Connected U-net Deep Learning Architecture,” ArXiv e-prints, May 2018. 7 [16] E. Vorontsov, G. Chartrand, A. Tang, C. Pal, and S. Kadoury, “Liver lesion seg- mentation informed by joint liver segmentation,” CoRR, vol. abs/1707.07734, 2017. 7 [17] X. Li, H. Chen, X. Qi, Q. Dou, C. Fu, and P. Heng, “H-denseunet: Hybrid densely connected unet for liver and tumor segmentation from ct volumes,” IEEE Trans- actions on Medical Imaging, vol. 37, pp. 2663–2674, Dec 2018. 7 [18] K. Tseng, Y. Lin, W. Hsu, and C. Huang, “Joint sequence learning and cross- modality convolution for 3d biomedical segmentation,” pp. 3739–3746, July 2017. 7 [19] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Computer Vision (ICCV), 2017 IEEE International Conference on, pp. 2980–2988, IEEE, 2017. 7 [20] R. Girshick, “Fast r-cnn,” arXiv preprint arXiv:1504.08083, 2015. 7 [21] Y.-T. Hu, J.-B. Huang, and A. Schwing, “Maskrnn: Instance level video object segmentation,” in Advances in Neural Information Processing Systems, pp. 324– 333, 2017. 7, 18 [22] A. Arnab and P. H. S. Torr, “Pixelwise instance segmentation with a dynamically instantiated network,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017. 7 36[23] I. R. Radiological Society of North America, “Positron emission tomography - computed tomography (pet/ct).” https://www.radiologyinfo.org/. 2018. 9 [24] J. D. J. P. G. G. H. J. C. H. K. A. J. T. M. J. P. N. S. H. S. T. Landberg, J. Chavaudra, “Report 62,” International Commission on Radiation Units and Measurements, vol. os32, pp. 153–161, Oct 1999. 10 [25] N. G. Burnet, S. J. Thomas, K. E. Burton, and S. J. Jefferies, “Defining the tumour and target volumes for radiotherapy,” Cancer Imaging, vol. 4, p. NP, Nov 2004. 10 [26] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object de- tection with region proposal networks,” in Advances in Neural Information Pro- cessing Systems 28 (C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, eds.), pp. 91–99, Curran Associates, Inc., 2015. 18 [27] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, pp. 234–241, Springer, 2015. 18, 19 [28] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d u-net: learning dense volumetric segmentation from sparse annotation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 424–432, Springer, 2016. 18 [29] L. Zhang, V. Gopalakrishnan, L. Lu, R. M. Summers, J. Moss, and J. Yao, “Self- learning to detect and segment cysts in lung ct images without manual annotation,” CoRR, vol. abs/1801.08486, 2018. 18 [30] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural net- works for volumetric medical image segmentation,” in 3D Vision (3DV), 2016 Fourth International Conference on, pp. 565–571, IEEE, 2016. 19 [31] C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso, “Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations,” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 240–248, Springer, 2017. 19 [32] M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. J. Pal, “The importance of skip connections in biomedical image segmentation,” in LA- BELS/DLMIA@MICCAI, 2016. 20 [33] J. Brooke, “SUS: A quick and dirty usability scale,” Usability evaluation in indus- try, 1996. 24, 26 [34] N. Sultanum, M. Brudno, D. Wigdor, and F. Chevalier, “More text please! un- derstanding and supporting the use of visualization for clinical text overview,” in Proceedings of the 2018 CHI Conference on Human Factors in Computing Sys- tems, CHI ’18, (New York, NY, USA), pp. 422:1–422:13, ACM, 2018. 26 [35] J. Sauro, A Practical Guide to the System Usability Scale: Background, Bench- marks & Best Practices. CreateSpace Independent Publishing Platform, 2011. 28 37 [36] A. Bangor, P. Kortum, and J. Miller, “Determining what individual sus scores mean: Adding an adjective rating scale,” J. Usability Studies, vol. 4, pp. 114–123, May 2009. 28
|